Sensors

Air-mass, lambda, pressure, rotational-speed, structure-borne sound, temperature

Bosch-ibusiness.com

Content

(Press buttons for more information)

0 General Information

1.1 Air-mass sensors HFM with analog interface

1.2 Air-mass sensors HFM with digital interface

1.3 Air-mass sensors PFM pressure-based flow meter

2.1 Lambda sensors Type LSF-4.2 (switching type)

2.2 Lambda sensors Type LSU-4.9 (wideband)

2.3 Lambda sensors Type LSU-5.2 (wideband)

2.4 Nitrogen-oxide sensorsGen 3 12/24 Volt

3.1 Pressure sensorsDifferential pressure sensor

3.2 Pressure sensorsAbsolute pressure sensor

3.3 Pressure sensorsPressure sensor for CNG

3.4 Pressure sensorsMedium pressure sensor

3.5 Pressure sensorsHigh pressure sensor

4.1 Rotational-speed sensors Hall speed sensor for Cam-/Crankshaft

4.2 Rotational-speed sensorsHall speed sensor for Transmission

4.3 Rotational-speed sensorsInductive speed sensor

5 Structure-borne soundPiezoelectric vibration sensor

6 Temperature sensors Temperature sensor for air/liquid

7 List of part numbers

General remark: Please note that this catalogue is for information only. The listed products do not constitute binding purchase offers. We reserve the right to update the products and the information given herein. Please feel free to contact our sales department in case of any questions, or if you would like to receive an individual offer."

Sensor IP degrees

IP degrees of protection

Valid for the electrical equipment of road vehicles as per DIN 40 050 (Part 9).

- ▶ Protection of the electrical equipment inside the enclosure against the effects of solid foreign objects including dust.
- ▶ Protection of the electrical equipment inside the enclosure against the ingress of water.
- ▶ Protection of persons against contact with dangerous parts, and rotating parts, inside the enclosure.

Structure of the IP code							
Code letters	<u>IP</u>	2	<u>n</u> 1)	3	<u>n²)</u>	¢	<u>M</u>
First characteristic numeral 06 or letter X							
Second characteristic numeral 09 or letter X							
Additional letter (optional) A, B, C, D							
Supplementary letter (optional M, S							

If a characteristic numeral is not given, it must be superseded by the letter "X" (i. e. "XX" if both characteristic numerals are not given). The supplementary and/or additional letters can be omitted at will, and need not be superseded by other letters.

¹⁾ The supplementary letter "K" is located either directly after the first characteristic numerals 5 and 6, or directly after the second characteristic numerals 4, 6 and 9.

²⁾ During the water test. Example: IP16KB protection against the ingress of solid foreign bodies with diameter ≥ 50 mm, protection against high-pressure hose water, protection against access with a finger.

Sensor IP codes

1st characteristic numeral and sup- plementary letter K	Protection of electrical equipment against ingress of solid foreign objects	Persons	2nd characteristic numeral and supplementary letter K	Protection of electrical equipment against the ingress of water	Additional letter (optional)	Protection of persons against contact with hazardous parts	Additional letter (optional)
0	Non-protected	Non-protected	0	Non-protected	А	Protection against contact with back of hand	M Movable parts of the equipment are in motion ²⁾
1	Protection against foreign bodies Ø ≥ 50 mm	Protection against contact with back of hand	1	Protection against vertically dripping water	В	Protection against contact with finger	S Movable parts of the equipment are stationary ²⁾
2	Protection against foreign bodies Ø ≥ 12.5 mm	Protection against contact with finger	2	Protection against dripping water (at an angle of 15°)	С	Protection against contact with tool	K For the electrical equipment of road vehicles
3	Protection against foreign bodies Ø ≥ 2.5 mm	Protection against contact with tool	3	Protection against splash water	D	Protection against contact with wire	
4	Protection against foreign bodies Ø ≥ 1.0 mm	Protection against contact with wire	4	Protection against spray water			
5K	Dust-protected	Protection against contact with wire	4K	Protection against high- pressure spray water			
6K	Dust-proof	Protection against contact with wire	5	Protection against jets of water			
			6	Protection against powerful jets of water			
			6K	Protection against high-pressure jets of water			
			7	Protection against temporary immersion			
			9	Protection against continuous immersion			
			9K	Protection against high-pressure/ steam-jet cleaners			Product groups

CE-Identification and manufacturer declaration with EU directive

As under the EU Directive all electrically-powered machines, devices and systems, which are manufactured, imported and sold within the borders of the European Union must have a CE-label attached to them. The EU Directive also includes the following individual guidelines, which are of significance for sensor users.

1. Machine Directive

It is valid for self-contained operational machines or any interlinking of machines to form integral systems. It is not valid for machine components however, such as, for example, electrical control systems or sensors which have no independent function. The entire machine or system must always comply with the Directive.

2. EMC Directive

This Directive is valid for all electrical and electronic devices, installations and systems. However, this Directive is also valid for complex components such as, e.g. sensors, although this only applies were they are openly available for purchase by the public. The sensors listed in this catalogue are solely shipped as supplied parts or replacement parts, and are not subject to § 5 paragraph 5 of the EMC Act regarding a mandatory CE label. The limits for the relaying and the radiation of high-frequency interference are specified in EN 55014 of the EMC Act. Because of the previouslymentioned reasons, Bosch sensors are on no account subject to mandatory CE labeling. We will gladly assist you with information in all matters relating to the acceptance of your application.

Liability disclaimer

For applications listed in the catalogue, prior clarification of the technical suitability is imperative. All listed products are designed for automotive vehicles in its intended use. If you use these products within specification, but outside its intended use, you are responsible for establishing the suitability of our products for your intended purpose, if other than for its approved application (in particular, if subjected to different loads or under different technical conditions) by taking suitable action (especially testing). We would like to point out to you that the responsibility for the overall system also lies solely with you.

If your application cannot be solved with this range of products or in case you need our consultancy, please inform us about your requirements and contact us via e-mail address www.bosch-ibusiness.com/contact/

HFM with analog interface

- ► Nominal air-flow up to 1.050 kg/h
- ► Analog interface
- ► Compact design
- ► Low weight
- ► Fast response time
- ► Low power input
- ▶ Pulsation flow detection

Application

The air-mass sensor (HFM) is designed to measure the air mass and temperature of the intake air in motor vehicles with diesel and gasoline applications. The sensor measures the actual air mass flow rate for an optimized air-fuel mixture, supporting an efficient fuel combustion and powerful engine performance.

Design and operation

The standard HFM consists of a plug-in sensor and cylinder housing. The electronic module, with the evaluation circuit and the sensor element, is located in the plug-in sensor. The sensor element is positioned on the electronic module and extends into the metering duct (bypass channel) of the connector housing. The location of the temperature sensor (NTC) is on the backside of the connector housing.

The HFM is a thermal flowmeter. From the intake air flow within the cylinder housing, a portion of the total mass air flow will pass across the sensor element in the bypass channel. In the center exists a heating zone which is controlled to a certain temperature, depending on the temperature of the intake air. Without air flow, the temperature from the heating zone to the edges decreases linearly, and the temperature sensors up- and downstream of the heating zone indicate the same value. With air flow,

the sensor area upstream will be cooled by the heat transfer in the boundary layer.

The downstream temperature sensor will keep its temperature because the air is heated as it passes over the heating zone. The temperature sensors show a temperature difference which depends on amount and direction of the air flow. The difference between the signals of the temperature sensors is evaluated in a bridge circuit.

Explanation of characteristic data

 $\dot{m}_{\rm N}$ Nominal airflow

 $\Delta \dot{m}/\dot{m}$ Relative accuracy

∧ Time until measurement error ≤ 5 %

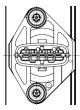
Time until change in measured value 63%

HFM with analog interface

Product type

HFM7-R5

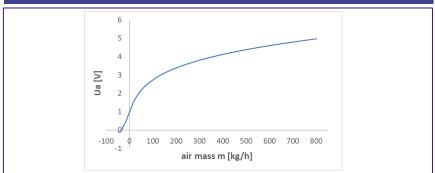
Part number


0 280 218 120 (successor of 0 280 218 037/116)

Picture

Dimensional drawings

CONNECTIONS:


- 1: NTC
- 2: POWER SUPPLY
- 3: POWER GROUND
- 4: REFERENCE VOLTAGE
- 5: MASS AIR-OUTPUT

Technical data

Features	With intake	With intake air temperature sensor	
Interface	analog		
Nominal airflow	\dot{m}_{N}	480 kg/h	
Measuring range	ṁ	-30 +640 kg/h	
Rated supply voltage	U_N	14 V	
Supply-voltage range	U_V	8 17 V	
Relative accuracy 1)	Δ <i>ṁ / ṁ</i>	± 3 %	
Temperature range ²⁾	°C	-40 +130	
Pressure drop at $\dot{m}_{\rm N}$	Δρ	< 15 hPa	
Current input	I_V	< 0,1 A	
Time constant	$ au_{63}$ $^{3)}$	≤ 10 ms	
Time constant	$ au\Delta$ 4)	≤ 30 ms	

- 1) for $0.04 \le \Delta \dot{m} / \dot{m} N \le 1.3$
- 2) short-time (≤ 3 min.) to 130 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m / m | ≤ 5 %.

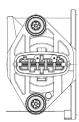
Air-mass characteristic curve at ambient temperature

Accessories		
Compact connector	5-pin	1 928 403 738
Contact pins	For Ø 0.51.0 mm²	1 928 498 056
Contact pins	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seals	For Ø 0.51.0 mm²	1 928 300 599
Single-wire seals	For Ø 1.52.5 mm ²	1 928 300 600
Dummy plug		1 928 300 601

HFM with analog interface

Product type

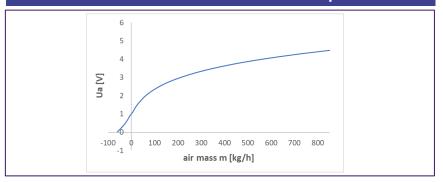
HFM7-R5


Part number

0 280 218 446

Dimensional drawings

CONNECTIONS:


- 1: NOT CONNECTED
- 2: POWER SUPPLY
- 3: POWER GROUND
- 4: REFERENCE VOLTAGE
- 5: MASS AIR-OUTPUT

Technical data

Features	Without int	Without intake air temperature sensor	
Interface	analog		
Nominal airflow	$\dot{m}_{ m N}$	850 kg/h	
Measuring range	ṁ	-50 +1100 kg/h	
Rated supply voltage	U_N	14 V	
Supply-voltage range	U_V	8 17 V	
Relative accuracy 1)	Δ <i>ṁ / ṁ</i>	± 3 %	
Temperature range ²⁾	°C	-40 +120	
Pressure drop at $\dot{m}_{\rm N}$	Δp	< 15 hPa	
Current input	I_V	< 0,1 A	
Time constant	τ ₆₃ ³⁾	≤ 15 ms	
Time constant	τΔ ⁴⁾	≤ 30 ms	

- 1) for $0.04 \le \Delta \dot{m} / \dot{m} N \le 1.3$
- 2) short-time (≤ 3 min.) to 130 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m / m | ≤ 5 %.

Air-mass characteristic curve at ambient temperature

Accessories

Compact connector	5-pin	1 928 403 836
Contact pins	For Ø 0.51.0 mm²	1 928 498 056
Contact pins	For Ø 1.52.5 mm²	1 928 498 057
Single-wire seals	For Ø 0.51.0 mm²	1 928 300 599
Single-wire seals	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

HFM with analog interface

Product type

HFM-7

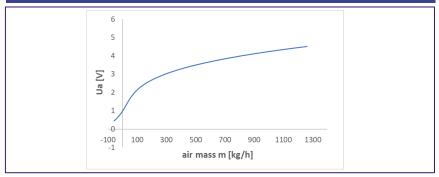
Part number

0 280 218 218

Picture

Dimensional drawings

CONNECTIONS:


- 1: POWER GROUND
- 2: REFERENCE VOLTAGE
- 3: POWER SUPPLY
- 4: NTC
- 5: MASS AIR-OUTPUT

Technical data

Features	With intake	With intake air temperature sensor	
Interface	analog		
Nominal airflow	ṁ _Ν	1050 kg/h	
Measuring range	ṁ	-90 +1150 kg/h	
Rated supply voltage	U _N	14 V	
Supply-voltage range	U_V	6 17 V	
Relative accuracy 1)	Δ <i>ṁ / ṁ</i>	± 2 %	
Temperature range ²⁾	°C	-40 +120	
Pressure drop at $\dot{m}_{\rm N}$	Δρ	< 10 hPa	
Current input	I_V	< 0,1 A	
Time constant	$ au_{63}^{\ 3)}$	≤ 10 ms	
Time constant	τΔ 4)	≤ 30 ms	

- 1) for $0.04 \le \Delta \dot{m} / \dot{m} N \le 1.3$
- 2) short-time (≤ 3 min.) to 130 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m / m | ≤ 5 %.

Air-mass characteristic curve at ambient temperature

Accessories		
Connector housing	5-pin	1 928 405 159
Contact pins	For Ø 0.350.5 mm²	1 928 498 143
Contact pins	For Ø 0.751.0 mm ²	1 928 498 144
Single-wire seal	For Ø 1.21.6 mm ²	1 928 300 934
Single-wire seal	For Ø 1.72.1 mm²	1 928 300 936
Dummy plug		1 928 300 935

HFM with digital interface

- ► Nominal air-flow up to 2.300 kg/h
- ► Digital interface (frequency/SENT)
- ► Compact design
- ► Low weight
- ► Fast response time
- ► Low power input
- Pulsation flow detection

Application

The air-mass sensor (HFM) is designed to measure the air mass and temperature of the intake air in motor vehicles with diesel and gasoline applications. The sensor measures the actual air mass flow rate for an optimized air-fuel mixture, supporting an efficient fuel combustion and powerful engine performance.

Design and operation

The standard HFM consists of a plug-in sensor and cylinder housing. The electronic module, with the evaluation circuit and the sensor element, is located in the plug-in sensor. The sensor element is positioned on the electronic module and extends into the metering duct (bypass channel) of the connector housing. The location of the temperature sensor (NTC) is on the backside of the connector housing.

The HFM is a thermal flowmeter. From the intake air flow within the cylinder housing, a portion of the total mass air flow will pass across the sensor element in the bypass channel. In the center exists a heating zone which is controlled to a certain temperature, depending on the temperature of the intake air. Without air flow, the temperature from the heating zone to the edges decreases linearly, and the temperature sensors up- and downstream of the heating zone indicate the same value. With air flow,

the sensor area upstream will be cooled by the heat transfer in the boundary laver.

The downstream temperature sensor will keep its temperature because the air is heated as it passes over the heating zone. The temperature sensors show a temperature difference which depends on amount and direction of the air flow. The difference between the signals of the temperature sensors is evaluated in a bridge circuit.

Explanation of characteristic data

Nominal airflow

 $\Delta \dot{m}/\dot{m}$ Relative accuracy

Time until measurement error ≤ 5 %

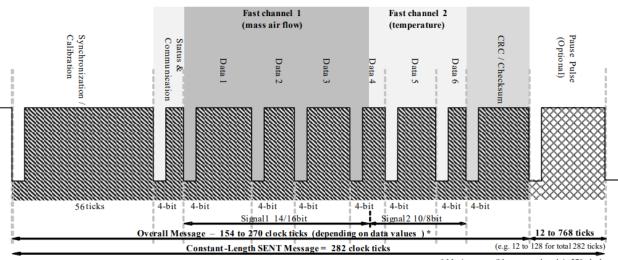
Time until change in measured value 63%

HFM with digital interface – SENT interface

SENT interface

The SENT interface is a one-way asynchronous voltage interface which requires three wires: supply voltage, signal voltage and ground.

For HFM8 the transmission takes place in accordance with the following figure (SENT transmissions).


The air mass signal is read from Fast Channel 1 in 14-bit data format. The pressure signal is read from Fast Channel 2 in 10-bit data format.

The temperature signal and the signals of the humidity sensor are transmitted via the Slow Channel in 12-bit data format.

In addition, further signals and status information are transmitted in the Slow Channel.

Specified descriptions are to be inferred from the SAE SENT standard J2716 APR 2016.

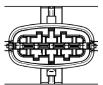
SENT message format for HFM8

^{*} Maximum possible message length is 270 clock ticks, minimum length is 154 ticks, since CRC value depends on message data.

HFM with digital interface

Product type

HFM-7

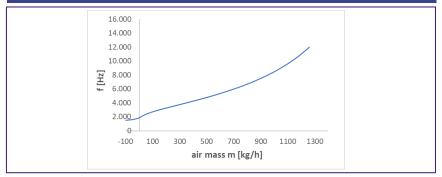

Part number

0 280 218 416

Dimensional drawings

1 2 3 4

CONNECTIONS:


- 1: POWER SUPPLY
 2: POWER GROUND
- 3: NTC
- 4: MASS AIR-OUTPUT

Technical data

Features	With intake	With intake air temperature sensor	
Interface	FAS (frequency analog signal)		
Nominal airflow	\dot{m}_{N}	850 kg/h	
Measuring range	ṁ	-90 +1150 kg/h	
Rated supply voltage	U _N	14 V	
Supply-voltage range	U_V	6 17 V	
Relative accuracy 1)	Δ <i>ṁ / ṁ</i>	± 5 %	
Temperature range ²⁾	°C	-40 +120	
Pressure drop at $\dot{m}_{ m N}$	Δρ	< 12 hPa	
Current input	I_V	< 0,1 A	
Time constant	$ au_{63}^{\ 3)}$	≤ 10 ms	
Time constant	τΔ 4)	≤ 30 ms	

- 1) for $0.04 \le \Delta \dot{m} / \dot{m} N \le 1.3$
- 2) short-time (≤ 3 min.) to 130 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation $|\Delta m/m| \le 5\%$.

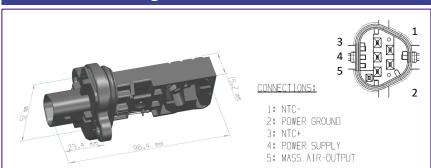
Air-mass characteristic curve at ambient temperature

Accessories

Connector housing	4-pin	1 928 404 745
Contact pins	For Ø 0.51.0 mm ²	1 928 498 056
Contact pins	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seal	For Ø 0.351.0 mm ²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

HFM with digital interface

Product type

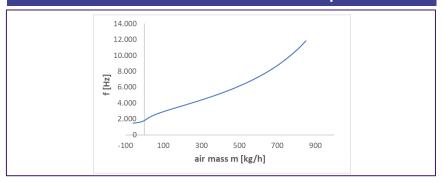

HFM-7 SF

Part number

0 280 218 429

Dimensional drawings

Picture



Technical data

Features	With intak	e air temperature sensor
Interface	FAS (freque	ency analog signal)
Nominal airflow	\dot{m}_{N}	640 kg/h
Measuring range	ṁ	-60 +800 kg/h
Rated supply voltage	U_N	14 V
Supply-voltage range	U_V	6 17 V
Relative accuracy 1)	Δ <i>ṁ / ṁ</i>	± 2 %
Temperature range ²⁾	°C	-40 +120
· operatare range	-0	40 1120
Pressure drop at $\dot{m}_{\rm N}$	Δρ	depending on size and design of cross section area
		depending on size and
Pressure drop at $\dot{m}_{\rm N}$	Δρ	depending on size and design of cross section area
Pressure drop at $\dot{m}_{\rm N}$	Δ p	depending on size and design of cross section area < 0,1 A

¹⁾ for $0.04 \le \Delta \dot{m} / \dot{m} N \le 1.3$

Air-mass characteristic curve at ambient temperature

Accessories

Connector housing	5-pin	1 928 405 138
Contact pins	For Ø 0.350.5 mm ²	1 928 498 143
Contact pins	For Ø 0.751.0 mm ²	1 928 498 144
Single-wire seal	For Ø 1.21.6 mm ²	1 928 300 934
Single-wire seal	For Ø 1.72.1 mm²	1 928 300 936
Dummy plug		1 928 300 935

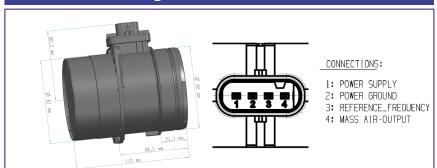
²⁾ short-time (≤ 3 min.) to 130 °C

³⁾ Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h

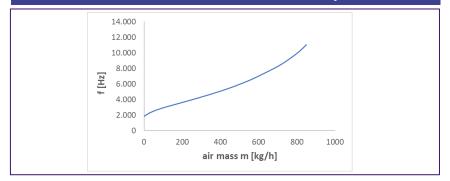
⁴⁾ Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m / m | ≤ 5 %.

HFM with digital interface

Product type


HFM-7

Part number


0 281 002 956

Dimensional drawings

Air-mass characteristic curve at ambient temperature

Technical data Features Without intake air temperature sensor Interface FAS (frequency analog signal) Nominal airflow \dot{m}_{N} 640 kg/h -60 ... +800 kg/h Measuring range ṁ Rated supply voltage U_N Supply-voltage range U_V 6 ... 17 V Relative accuracy 1) $\Delta \dot{m} / \dot{m}$ ± 2 % Temperature range 2) °C -40 ... +120

 Δp

 I_V

 $\tau_{63}^{3)}$

 $\tau\Delta^{4)}$

< 12 hPa

< 0,1 A

≤ 10 ms

≤ 30 ms

Pressure drop at $\dot{m}_{\rm N}$

Current input

Time constant

Time constant

¹⁾ for $0.04 \le \Delta \dot{m} / \dot{m} N \le 1.3$

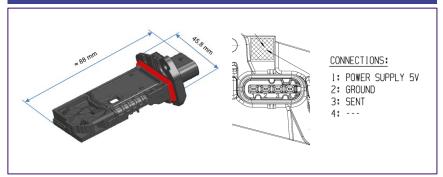
²⁾ short-time (≤ 3 min.) to 130 °C

³⁾ Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h

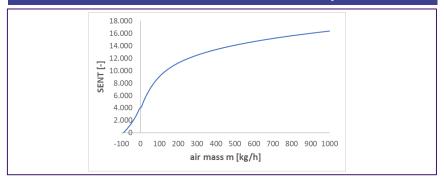
⁴⁾ Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m / m | ≤ 5 %.

HFM with digital interface

Product type


HFM-8-PTH SF

Part number


0 280 218 03X

Dimensional drawing

Air-mass characteristic curve at ambient temperature

Technical data With integrated pressure, humidity and **Features** intake air temperature sensor Interface **SENT** Nominal airflow 640 kg/h $\dot{m}_{\rm N}$ Measuring range airflow ṁ -90 ... +1000 kg/h Measuring range pressure kPa 10 ... 120 %rH 0 ... 100 Measuring range humidity Rated supply voltage U_N 5 V Supply-voltage range U_{ν} 4,85 ... 5,15 V Relative accuracy 1) $\Delta \dot{m} / \dot{m}$ ± 1.5 % °C -40 ... +130 Temperature range 2) Pressure drop at $\dot{m}_{\rm N}$ Δp depending on size and design of cross section area Current input < 0,03 A

1) for $0.025 \le \Delta \dot{m} / \dot{m} N \le 1.0$

Time constant

Time constant

- 2) short-time (\leq 3 min.) to 140 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m / m | ≤ 5 %.

Accessories

Connector	4-pin	Hirschmann 872-97502
		Option 1, Spec. 2, Code A

 $au_{63}^{3)}$

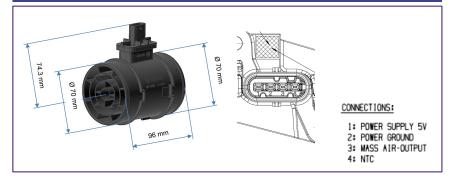
τΔ 4)

≤ 10 ms

≤ 30 ms

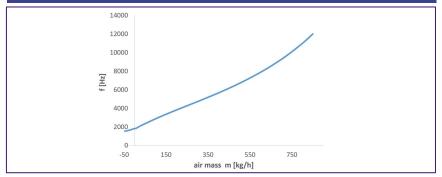
HFM with digital interface

Product type


HFM-8-T

Part number

0 280 218 04B


Dimensional drawing

Technical data

1 common data		
Features	With intake air temperature sensor	
Interface	FAS (frequency analog signal)	
Nominal airflow	$\dot{m}_{ m N}$	480 kg/h
Measuring range airflow	ṁ	-60+850 kg/h
Rated supply voltage	U _N	5 V
Supply-voltage range	U _V	4,85 5,15 V
Relative accuracy	Δ <i>ṁ / ṁ</i>	± 1,5 %
Temperature range	°C	-40 +140
Pressure drop at $\dot{m}_{\rm N}$	Δρ	≤ 7 hPa
Current input	I_V	< 0,03 A
Time constant	$ au_{63}^{\ 3)}$	≤ 10 ms
Time constant	τΔ 4)	≤ 30 ms

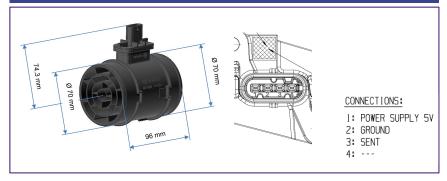
Air-mass characteristic curve at ambient temperature

Accessories

Connector	4-pin	Hirschmann 872-97502
		Option 1, Spec. 2, Code A

HFM with digital interface

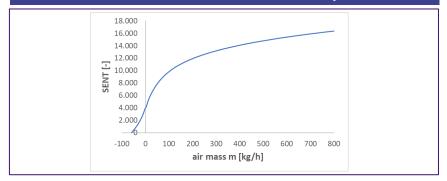
Product type


HFM-8-PTH

Part number

0 280 218 07T

Dimensional drawing


Picture

Technical data

Features	With integrated pressure, humidity and intake air temperature sensor	
Interface	SENT	
Nominal airflow	\dot{m}_{N}	480 kg/h
Measuring range airflow	ṁ	-60+800 kg/h
Measuring range pressure	kPa	10 120
Measuring range humidity	%rH	0 100
Rated supply voltage	U_N	5 V
Supply-voltage range	U_V	4,85 5,15 V
Relative accuracy 1)	Δṁ/ṁ	± 1.5 %
Temperature range ²⁾	°C	-40 +130
Pressure drop at $\dot{m}_{ m N}$	Δρ	≤ 7 hPa
Current input	I_V	< 0,03 A
Time constant	τ ₆₃ ³⁾	≤ 10 ms
Time constant	τΔ 4)	≤ 30 ms

- 1) for $0.025 \le \Delta \dot{m} / \dot{m} N \le 1.0$
- 2) short-time (≤ 3 min.) to 140 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m/m | ≤ 5 %.

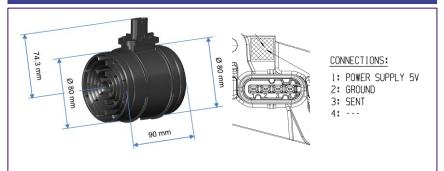
Air-mass characteristic curve at ambient temperature

Accessories

Connector	4-pin	Hirschmann 872-97502
		Option 1, Spec. 2, Code A

HFM with digital interface

Product type

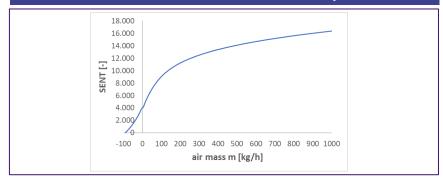

HFM-8-PTH

Part number

0 280 218 07U

Dimensional drawing

Picture


4

Technical data

Features	With integrated pressure, humidity and intake air temperature sensor	
Interface	SENT	
Nominal airflow	\dot{m}_{N}	640 kg/h
Measuring range airflow	ṁ	-90 +1000 kg/h
Measuring range pressure	kPa	10 120
Measuring range humidity	%rH	0 100
Rated supply voltage	U _N	5 V
Supply-voltage range	U_V	4,85 5,15 V
Relative accuracy 1)	Δ m / m	± 1.5 %
Temperature range ²⁾	°C	-40 +130
Pressure drop at $\dot{m}_{ m N}$	Δρ	≤ 5 hPa
Current input	I_V	< 0,03 A
Time constant	τ ₆₃ ³⁾	≤ 10 ms
Time constant	τΔ 4)	≤ 30 ms

- 1) for $0.025 \le \Delta \dot{m} / \dot{m} N \le 1.0$
- 2) short-time (≤ 3 min.) to 140 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m/m | ≤ 5 %.

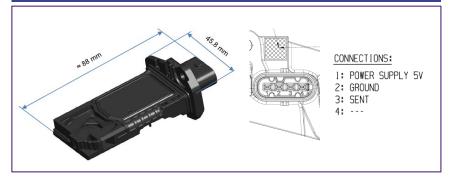
Air-mass characteristic curve at ambient temperature

Accessories

Connector	4-pin	Hirschmann 872-97502
		Option 1, Spec. 2, Code A

HFM with digital interface

Product type


HFM-8-T SF

Part number

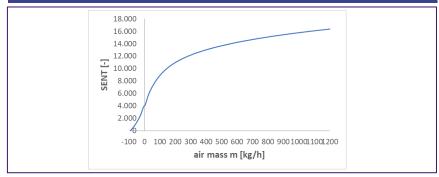
0 281 006 597

Dimensional drawing

Picture Technical data

Features With intake air temper		ke air temperature sensor
Interface	SENT	
Nominal airflow	\dot{m}_{N}	640 kg/h
Measuring range airflow	ṁ	-60 +1200 kg/h
Rated supply voltage	U_N	5 V
Supply-voltage range	U_{V}	4,85 5,15 V
Relative accuracy 1)	Δ <i>ṁ</i> / <i>ṁ</i>	± 2.0 %
Temperature range ²⁾	°C	-40 +130
Pressure drop at $\dot{m}_{ m N}$	Δρ	depending on size and design of cross section area

1) for $0.01 \le \Delta \dot{m} / \dot{m} N \le 1.7$


Current input

Time constant

Time constant

- 2) short-time (≤ 3 min.) to 140 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m/m | ≤ 5 %.

Air-mass characteristic curve at ambient temperature

Accessories

Connector	4-pin	Hirschmann 872-97502
		Option 1, Spec. 2, Code C

Accessories are not included in the scope of delivery of the sensor and therefore to be ordered separately as required.

< 0,02 A

≤ 10 ms

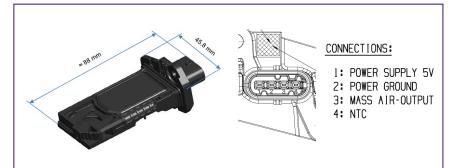
≤ 30 ms

 au_{63} 3)

τΔ 4)

HFM with digital interface

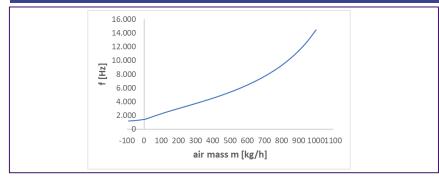
Product type


HFM-8-T SF

Part number

0 280 218 07K

Dimensional drawing



Technical data

1 Commodi data			
Features	With inta	With intake air temperature sensor	
Interface	FAS (freque	ency analog signal)	
Nominal airflow	$\dot{m}_{ m N}$	640 kg/h	
Measuring range airflow	ṁ	-90 +1000 kg/h	
Rated supply voltage	U _N	5 V	
Supply-voltage range	U_V	4,85 5,15 V	
Relative accuracy 1)	Δ <i>ṁ / ṁ</i>	± 2.0 %	
Temperature range ²⁾	°C	-40 +130	
Pressure drop at $\dot{m}_{\rm N}$	Δρ	depending on size and design of cross section area	
Current input	I_V	< 0,02 A	
Time constant	τ ₆₃ ³⁾	≤ 10 ms	
Time constant	τΔ 4)	≤ 30 ms	

- 1) for $0.025 \le \Delta \dot{m} / \dot{m} N \le 1.0$
- 2) short-time (≤ 3 min.) to 140 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m / m | ≤ 5 %.

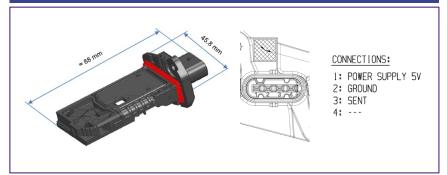
Air-mass characteristic curve at ambient temperature

Accessories

Connector	4-pin	Hirschmann 872-97502
		Option 1, Spec. 2, Code A

HFM with digital interface

Product type

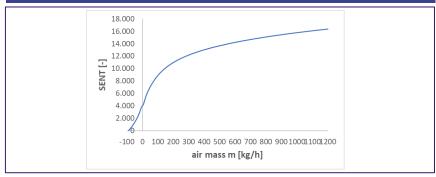

HFM-8-TH SF

Part number

0 281 006 812

Dimensional drawing

Picture


|--|

Technical data

Features	With integrated humidity and intake air temperature sensor	
Interface	SENT	
Nominal airflow	\dot{m}_{N}	640 kg/h
Measuring range airflow	ṁ	-60 +1200 kg/h
Measuring range humidity	%rH	0 100
Rated supply voltage	U _N	5 V
Supply-voltage range	U_V	4,85 5,15 V
Relative accuracy 1)	Δ <i>ṁ / ṁ</i>	± 2.0 %
Temperature range ²⁾	°C	-40 +130
Pressure drop at $\dot{m}_{ m N}$	Δρ	depending on size and design of cross section area
Current input	I _V	< 0,02 A
Time constant	τ ₆₃ ³⁾	≤ 10 ms
Time constant	τΔ 4)	≤ 30 ms

¹⁾ for $0.01 \le \Delta \dot{m} / \dot{m} N \le 1.7$

Air-mass characteristic curve at ambient temperature

Accessories

Connector	4-pin	Hirschmann 872-97502
		Option 1, Spec. 2, Code D

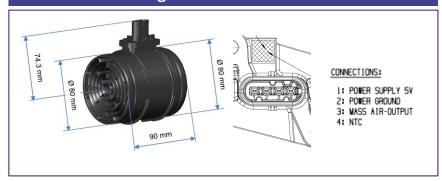
²⁾ short-time (≤ 3 min.) to 140 °C

³⁾ Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h

⁴⁾ Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation $|\Delta m/m| \le 5\%$.

HFM with digital interface

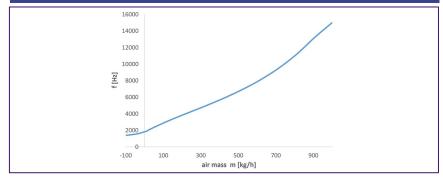
Product type


HFM-8-T

Part number

0 281 007 740

Dimensional drawing



Technical data

Features	With intake air temperature sensor	
Interface	SENT	
Nominal airflow	$\dot{m}_{ m N}$	640 kg/h
Measuring range airflow	ṁ	-60 +1000 kg/h
Rated supply voltage	U_N	5 V
Supply-voltage range	U_V	4,75 5,25 V
Relative accuracy 1)	Δṁ/ṁ	± 1.5 %
Temperature range ²⁾	°C	-40 +140
Pressure drop at $\dot{m}_{ m N}$	Δρ	≤12 hPa
Current input	I_V	< 0,03 A
Time constant	τ ₆₃ ³⁾	≤ 10 ms
Time constant	τΔ 4)	≤ 30 ms

- 1) for $0.025 \le \Delta \dot{m} / \dot{m} N \le 1.0$
- 2) short-time (≤ 3 min.) to 140 °C
- 3) Time required for step response of output voltage to 63 % of final value given an abrupt change in air mass from 10 kg/h to 310 kg/h
- 4) Delay on switch-on and after any change in flow rate until the output voltage has attained the relative measurement deviation | ∆ m/m | ≤ 5 %.

Air-mass characteristic curve at ambient temperature

Accessories

Connector	4-pin	Hirschmann 872-97502
		Option 1, Spec. 2, Code A

PFM pressure based flow meter

BOSCH

- ▶ Pressure range up to 4,5 bar
- ► Digital interface (SENT, 2 channels)
- ► Compact design
- ► Low weight
- ► Fast response time
- ► Efficient, robust & dynamic mass flow measurement
- ► High level of robustness & accuracy

Application

The pressure based air mass flow meter PFM is a sensor to measure the fresh air mass (without exhaust gas recirculation) within air ducts of CV-engines. It is usually mounted downstream of the charge air intercooler.

With the air mass flow measurement the fuel injection quantities can be optimized, which helps to minimize the exhaust gas emissions. The PFM detects the single values, which are used for the air mass flow calculation.

The single values are:

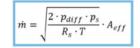
- Differential pressure (difference of total pressure and static pressure)
- Absolute pressure (static pressure)
- Temperature

Design and operation

The PFM measurement technique is based on the pitot-static tube concept, whereby two pressure sensors and one temperature sensor are installed in the sensor for the determination of the air mass flow. The differential pressure sensor is placed in the lower part of the sensor housing and its pressure taps are exposed to the air flow. Similarly, the temperature sensor is placed in the lower housing part to be directly immersed in the flow. The absolute pressure sensor is positioned in the upper part of the sensor housing, since its membrane does not have to be exposed to the flow.

The PFM is designed as a plug-in sensor, which is mounted in a measuring tube with three main parts: a nozzle, a measurement section and a diffusor. The design of the measurement tube uses engine specific data and conditions the flow for an optimal air mass flow measurement with the PFM.

The two analog pressure sensor signals are AD converted, the signal of the temperature sensor is digitized via the absolute pressure sensor. Finally, the sensor signals are transmitted to the ECU via the SENT communication protocol.


The sensor signals of

- the differential pressure sensor
- the absolute pressure sensor
- the temperature sensor are the input for the air mass flow calculation on the ECU.

The PFM is mounted downstream of the charge air intercooler and upstream of the throttle valve. Thereby, the PFM static pressure measurement can be used as boost pressure signal at this position.

The temperature signal of the PFM can not only be used for the calculation of the air mass flow, but also as an additional temperature signal at the PFM position between the charge air intercooler and the throttle valve.

Explanation of characteristic data

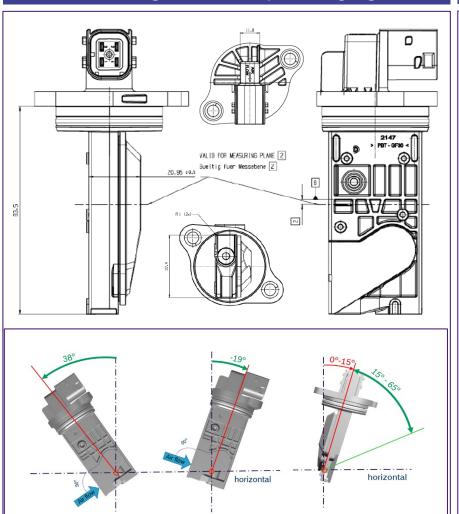
Signals of the Signal of the Signal

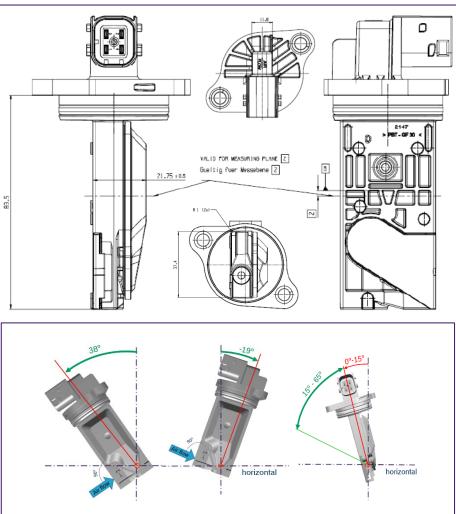
Differential pressure (p_{diff}=p_{tot}-p_s)
 Static pressure

T = Temperature

m = Air mass flow

R_s = gas-constant for air


A_{eff} = Effective area at mounting position

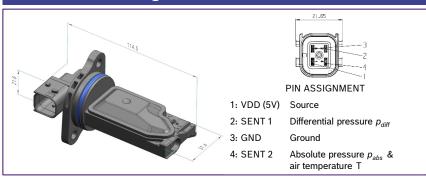

PFM pressure based flow meter

Dimensional drawings for VarA with positioning angles

Dimensional drawings for VarB with positioning angles

PFM with digital interface

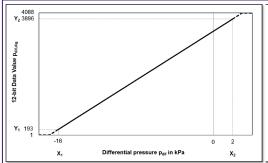
Product type


PFM VarA

Part number

0 280 218 902

Dimensional drawings




Technical data

Features	With integrated ambient-temperature sensor.	
Interface	SENT	
Measuring range differential pressure	p _{diff}	-16 2 kPa
Measuring range absolute pressure	p _{abs}	50 450 kPa
Rated supply voltage	U_N	5 V
Supply-voltage range	U_{V}	4,85 5,15 V
accuracy	∆ <i>ṁ / ṁ</i>	approx. 2 4 % calculation for each engine
Temperature range	°C	-40 +130
Pressure drop at $\dot{m}_{\rm N}$	Δp	depending on size and design of cross section area
Current input	I _{DD}	0,018 A 0,045 A
Time constant	$ au_{\text{IDD}}^{\ \ 1)}$	≤ 7 ms
Time constant	τ _{up,p,SENT} 2)	≤ 5 ms
1) Transient time until cumply current cattled		

- 1) Transient time until supply current settled
- 2) Time until 1st valid pressure value transfer

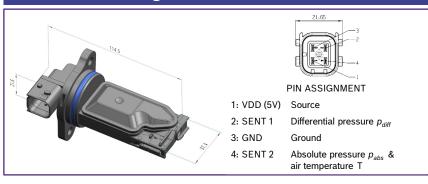
pressure characteristic curves at ambient temperature

Accessories

Connector	4-pin	Tyco HDSCS Code A

PFM with digital interface

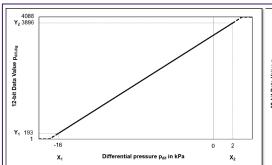
Product type

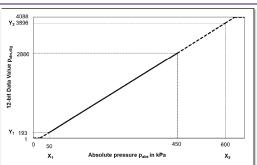

PFM VarB

Part number

0 280 218 900

Dimensional drawings




Technical data

Features	With integrated ambient-temperature sensor.	
Interface	SENT	
Measuring range differential pressure	p_{diff}	-16 2 kPa
Measuring range absolute pressure	p _{abs}	50 450 kPa
Rated supply voltage	U_N	5 V
Supply-voltage range	U_{V}	4,85 5,15 V
accuracy	Δ <i>ṁ / ṁ</i>	approx. 2 4 % calculation for each engine
Temperature range	°C	-40 +130
Pressure drop at $\dot{m}_{\rm N}$	Δp	depending on size and design of cross section area
Current input	I _{DD}	0,018 A 0,045 A
Time constant	τ _{IDD} 1)	≤ 7 ms
Time constant	τ _{up,p,SENT} 2)	≤ 5 ms
1) Transient time until cumply current cettled		

- 1) Transient time until supply current settled
- 2) Time until 1st valid pressure value transfer

pressure characteristic curves at ambient temperature

Accessories

Connector	4-pin	Tyco HDSCS Code B

2.1 Lambda sensors

Type LSF-4.2 (Switching type)

► compared to the wideband lambda sensor LSU4.9 the switching type LSF4.2 type is limited to applications in the near operation vicinity of lambda=1

Application

Engine management

- Gas engines
- Combined heat and thermal power units (CHP)
- Gasoline engines

Industrial processes

- Tempering furnaces
- Chemical industry
- Packaging equipment
- Process engineering
- Drying plants
- Metallurgy

Measurement and analysis processes

- Flue gas measurement
- Gas analysis
- Determination of Wobbe index

Design and application

The LSF4.2 lambda sensor operates according to the principle of a galvanic oxygen concentration cell with solid electrolyte. The sensor element is in the form of a long wafer with rectangular cross section. The measuring cell and the heater are integrated in this planar ceramic. The measuring cell's surfaces are coated with microporous layers of noble metal. On the one side, due to their catalytic activity, these layers define the sensor's characteristic curve, while on the other they serve as contact elements. On the surface of the ceramic exposed to the exhaust gas, the noble-metal electrode is protected by a porous ceramic layer which, across the whole operatingtemperature range, prevents erosion damage due to the deposits in the exhaust gas. This protective layer is applied using sintering techniques and, due among other things to its perfect adhesion and structure, it guarantees a long service life and compliance with the high functional demands made upon the sensor.

The heater is a wave-shaped element and contains noble metals. It is insulated, and integrated in the ceramic wafer. Even at low heater inputs it ensures that the sensor heats up quickly. The Lambda sensor operates as a reference-gas sensor, and compares the residual oxygen in the exhaust gas with the oxygen in the reference atmosphere (air circulating inside the sensor).

In the stoichiometric region of the air/fuel mixture (lambda = 1), there is a sudden jump in the sensor output voltage. The system is closed-loop controlled to lambda = 1 (two-state controller), and this voltage jump is evaluated in the 450...500 mV area of the system's characteristic curve.

The following approximate values apply as guidelines for sensor voltage:

- rich mixture (lambda < 1) 800...1000 mV,
- lean mixture (lambda > 1)
- in the area around 100 mV.

A prerequisite for efficient and reliable functioning is that the active sensor ceramic has a temperature of 350 °C. The integrated heater ensures that the sensor functions at exhaust-gas temperatures.

In addition, the direct sensor heating ensures that the sensor element heats up so rapidly that lambda closed loop control can come into operation within 10 secs. after engine start.

BOSCH

These advantages make an important contribution towards achieving low, stable exhaust-gas emission values. There are product variants with an additional "Thermal Shock Protection" (TSP). TSP increases robustness, especially against cold water droplets in cold start case of motor engines. An additional ceramic layer reduces the heat transition by distributing the drops to a larger area in case a water droplet hits the already heated sensor

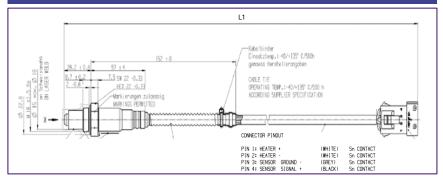
Characteristics

- Field-proven,
- robust and compact,
- reliable.
- high-temperature-resistant up to 1000 °C exhaust-gas temperature
- resistant to stone impact,
- resistant to corrosion,
- isolated ground sensor signal circuit,
- low heater rating,
- stable control characteristic,
- short switch-on time.

2.1 Lambda sensors

Type LSF-4.2 (Switching type)

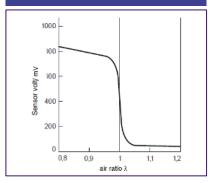
Product type


LSF-4.2

Part number

Several available

Dimensional drawing



Technical data

Measuring range of lambda	0,97 1,10
Sensor voltage at lambda = 0,97	800 ± 55 mV
Sensor voltage at lambda = 1,10	50 ± 30 mV
Internal resistance	≤ 0,5 kΩ
Response time (600mV 300mV)	< 125 ms
Response time (300mV 600mV)	< 60 ms
Heater current	0,48 ± 0,1 A
Heater power (with 13V heater voltage)	7 W
Heater nominal voltage supply	12 V
Exhaust gas temperature	350°C 930°C

Part number	TSP	Voltage	Cable length L1
0258 006 956	No	12 V	460 mm
0258 986 784	Yes	12 V	1135 mm

Characteristic curve

Accessories		
Connector housing	4-pin	Tyco 185 001-61
Contact pins	Sn	Tyco 1-962915-1
Single-wire seal		Tyco 828 904-1
Single-wire seal		Tyco 1 251 039 001

2.2 Lambda sensors

Type LSU-4.9 (wideband)

BOSCH

- The wideband Lambda sensor LSU is a planar ZrO₂ dual-cell limit current sensor with integrated heater.
- It is used for measuring the oxygen content and the λ value of exhaust gases in vehicle engines.
- ► Thanks to a steady characteristic curve in the range $\lambda = 0.65$ to air, it is universally applicable for $\lambda = 1$ and for other λ ranges.

Engine management

- Gas engines
- Combined heat and thermal power units (CHP)
- Diesel engines
- Gasoline engines
- Lean combustion engines

Industrial processes

- Tempering furnaces
- Chemical industry
- Packaging equipment
- Process engineering
- Drying plants
- Metallurgy

Measurement and analysis processes

- Flue gas measurement
- Gas analysis
- Determination of Wobbe index
- Incineration plants
- Wood
- Biomass

Design and operation

The LSU broadband Lambda sensor is a planar ZrO2 dual-cell limit current sensor with integrated heater. It is suitable for measuring the oxygen content and the λ value of exhaust gases in vehicle engines (gasoline and diesel). A constant characteristic curve in the range from λ = 0.65 to air makes it suitable for universal use for λ =1 and for other λ ranges. The connector module includes a trimming resistor, which determines the characteristics of the sensor and is necessary for the sensor to function. To function, the LSU requires special operating electronics (e.g. ETAS LA4 or IC CJ125 evaluation circuit) and may only be operated in conjunction with these. The Lambda sensor consists of two cells. It is made up of a Nernst type potentiometric oxygen concentration cell and an amperometric oxygen pump cell. Nernst cells have the property that oxygen ions diffuse through their ceramic at high temperatures, as soon as there are differences in the partial oxygen pressure at both ends of the ceramic. The transport of ions results in an electrical

voltage between them, which is measured using electrodes. The components of the exhaust gas diffuse through the diffusion duct to the electrodes for the pump and Nernst cell, where they are brought to thermodynamic equilibrium. Control electronics record the Nernst voltage U_N the concentration cell and supply the pump cell with a variable pump voltage Up. If UN takes on a value of less than 450 mV, the exhaust gas is lean and the pump cell is supplied with a current that causes oxygen to be pumped out of the duct. By contrast, if the exhaust gas is rich, U_N> 450 mV and the flow direction is reversed, causing the cell to pump oxygen into the duct. An integrated module (CJ125) can be used for signal evaluation. As well as the controller for the pump flow and the controller that keeps the Nernst cell at 450 mV, this module includes an amplifier. The sensor element is manufactured using thick-film techniques, which results in production distribution. This means that the characteristic curves for different sensors will vary. At an oxygen concentration of 0%, the output voltage is a uniform 0 V, as when using the evaluation circuit. However, at air the voltage scatters between approx. 6 and 8 V. This means that each sensor has to be individually calibrated so that a clear relationship between the measured oxygen concentration and the output voltage can be created. Calibration can be carried out on air in which the oxygen content is 20.9%. Calibration is recommended at each maintenance. There are product variants with an additional "Thermal Shock Protection" (TSP). TSP increases robustness, especially against cold water droplets in cold start case of motor engines. An additional ceramic laver

reduces the heat transition by distributing the drops to a larger area in case a water droplet hits the already heated sensor. This allows an earlier signal readiness in the vehicle since it is possible to heat sensor already with engine start.

Installation instructions

- Installation in exhaust gas pipes at a location exhibiting a representative exhaust gas composition given compliance with the specified temperature limits.
- The ceramic sensor element warms up rapidly after switching on the sensor heating.
 Once the ceramic element has warmed up, the occurrence of condensate, which could damage the hot ceramic sensor element, must be avoided.
- If possible, the installation position should be vertically upwards, however at least at an angle of 10 ° with respect to the horizontal. This prevents the accumulation of liquid between the sensor housing and sensor element. An angle of 90 ° is desirable, however no greater than 90 ° + 15 ° gas inlet hole with respect to the exhaust gas flow or 90 ° 30 °. Other angular positions are to be assessed separately if applicable.
- Tightening torque: 40 60 Nm, the material properties and strength of the thread must be designed accordingly.

Explanation of characteristics quantities

λ Air fuel ratio U_N Nernst voltage

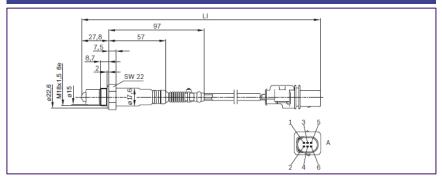
U_P Variable pump voltage

2.2 Lambda sensors

Type LSU-4.9 (wideband)

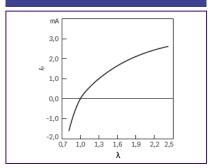
Product type

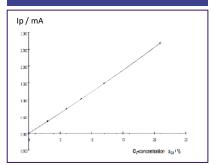
LSU-4.9


Part number

Several available

Technical data	
Measuring range of lambda	0,65 ∞
Heater power (with 7,5V heater voltage)	7,5 W
Heater nominal voltage supply	7,5 V
Exhaust gas temperature	≤ 930°C


Dimensional drawings


Part number	TSP	Voltage	Cable length L1
0281 004 805	Yes	12/24 V ²⁾	1000 mm
0258 017 594	Yes	12 V ^{1) 2)}	450 mm
0258 017 025	No	12 V	1000 mm

- 1) Heater voltage need to be PWM (Pulse-width modulation) controlled
- 2) Possible to use with CNG applications

Characteristic curve

Characteristic curve

Accessories

Mating connector parts set Connector housing, contacts, grommet 1 987 280 016

Mating connector parts set Connector nousing, contacts, grommet 1 367 260 016

2.3 Lambda sensors

Type LSU-5.2 (wideband)

BOSCH

- ► The wideband Lambda sensor LSU is a planar ZrO₂ dual-cell limit current sensor with integrated heater
- It is used for measuring the oxygen content and the λ value of exhaust gases in vehicle engines.
- ► Thanks to a steady characteristic curve in the range $\lambda = 0.65$ to air, it is universally applicable for $\lambda = 1$ and for other λ ranges.

Engine management

- Gas engines
- Gasoline engines
- Lean combustion engines

Industrial processes

- Tempering furnaces
- Chemical industry
- Packaging equipment
- Process engineering
- Drying plants
- Metallurgy
- Baking oven application

Measurement and analysis processes

- Flue gas measurement
- Gas analysis
- Determination of Wobbe index
- Incineration plants

Design and operation

The LSU broadband Lambda sensor is a planar ZrO2 dual-cell limit current sensor with integrated heater. It is suitable for measuring the oxygen content and the λ value of exhaust gases in vehicle engines (gasoline). A constant characteristic curve in the range from λ = 0.65 to air makes it suitable for universal use for $\lambda = 1$ and for other λ ranges. The connector module includes a trimming resistor, which determines the characteristics of the sensor and is necessary for the sensor to function. To function, the LSU requires special operating electronics (e.g. ETAS LA4 or IC CJ125 evaluation circuit) and may only be operated in conjunction with these.

The Lambda sensor consists of two cells. It is made up of a Nernst type potentiometric oxygen concentration cell and an amperometric oxygen pump cell. Nernst cells have the property that oxygen ions diffuse through their ceramic at high temperatures, as soon as there are differences in the partial oxygen pressure at both ends of the ceramic. The transport of ions results in an electrical

voltage between them, which is measured using electrodes. The components of the exhaust gas diffuse through the diffusion duct to the electrodes for the pump and Nernst cell, where they are brought to thermodynamic equilibrium. Control electronics record the Nernst voltage U_N at the concentration cell and supply the pump cell with a variable pump voltage U_p . If U_N takes on a value of less than 450 mV, the exhaust gas is lean and the pump cell is supplied with a current that causes oxygen to be pumped out of the duct. By contrast, if the exhaust gas is rich, U_N> 450 mV and the flow direction is reversed, causing the cell to pump oxygen into the duct. An integrated module (CJ125) can be used for signal evaluation. As well as the controller for the pump flow and the controller that keeps the Nernst cell at 450 mV, this module includes an amplifier. The sensor element is manufactured using thick-film techniques, which results in production distribution. This means that the characteristic curves for different sensors will vary. At an oxygen concentration of 0%, the output signal is 0, as when using the evaluation circuit. However, at air the signal scatters ±12%. This means that each sensor has to be individually calibrated so that a clear relationship between the measured oxygen concentration and the output voltage can be created. Calibration can be carried out on air in which the oxygen content is 20.9%. Calibration is recommended at each maintenance. The LSU5.2 has a "Thermal Shock Protection" (TSP). TSP increases robustness, especially against cold water droplets in cold start case of motor engines. An additional ceramic layer reduces the heat transition by distributing the drops to a larger area in case a water droplet hits the already heated sensor. This allows an earlier signal readiness in the vehicle since it is possible to heat sensor already with engine start.

Installation instructions

- Installation in exhaust gas pipes at a location exhibiting a representative exhaust gas composition given compliance with the specified temperature limits.
- The ceramic sensor element warms up rapidly after switching on the sensor heating. Once the ceramic element has warmed up, the occurrence of condensate, which could damage the hot ceramic sensor element, should be limited (max. 60 µl droplet size and max. 25 ul/sec liquid flow)
- If possible, the installation position should be vertically upwards, however at least at an angle of 10° with respect to the horizontal. This prevents the accumulation of liquid between the sensor housing and sensor element. An angle of 90° is desirable, however no greater than 90° + 15° gas inlet hole with respect to the exhaust gas flow or 90° 30°. Other angular positions are to be assessed separately if applicable.
- Tightening torque: 40 60 Nm, the material properties and strength of the thread must be designed accordingly.

Explanation of characteristics quantities

 λ Air fuel ratio U_N Nernst voltage

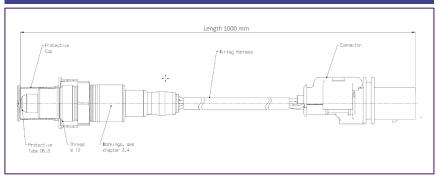
 U_P Variable pump voltage

2.3 Lambda sensors

Type LSU-5.2 (wideband)

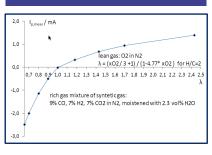
Product type

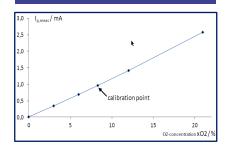
LSU-5.2


Part number

Several available

Technical data	
Measuring range of lambda	0,65 ∞
Heater power (with 6,8V heater voltage)	8,1 W
Heater nominal voltage supply	6,8 V
Exhaust gas temperature	≤ 980°C


Dimensional drawings


Part number	Remark	Cable length L1
0 258 037 056		1000 mm

LSU 5.2 sensors using a 2nd Gen. TSP

Characteristic curve

Characteristic curve

Accessories

Mating connector parts set Connector housing, contacts, grommet 1 986 280 016

2.4 Nitrogen-Oxide sensors

Gen 3 12/24 Volt

Precise measurement of the nitrogen oxide concentration in the exhaust gas

- Nitrogen oxide sensors ensure a reliable monitoring and control of the exhaust gas cleaning components in diesel engines.
- They precisely measure the nitrogen oxide concentration in the exhaust gas and support an efficient exhaust gas aftertreatment.
- In this way, Bosch nitrogen oxide sensors make a significant contribution to nitrogen-oxide reduction and compliance with applicable emission standards.

Application

Engine management

- Diesel engines
- Combined heat and thermal power units (CHP)
- H2 application
- CNG application
- Marine application

Industrial processes

- Tempering furnaces
- Chemical industry
- Packaging equipment
- Process engineering
- Drying plants

Design and operation

The NOx Gen3 is a technology designed to reduce nitrogen oxide (NOx) emissions from diesel engines, particularly in heavy-duty vehicles. This system utilizes advanced aftertreatment processes, including selective catalytic reduction (SCR) and diesel particulate filters (DPF), to effectively lower harmful emissions. The design focuses on optimizing the chemical reactions that convert NOx into harmless nitrogen and water vapor, thereby meeting stringent environmental regulations.

Advantages at a glance

- Reliable monitoring for compliance with applicable emission standards
- Long service life up to 250,000 km
- Especially robust and resistant sensor element thanks to a ceramic protective layer
- Simple and fast assembly thanks to the union screw
- Individually tested according to original equipment standards

2.4 Nitrogen-Oxide sensors

Gen 3 12/24 Volt

Product type

EGS-NX3

Part number

0 281 050 074

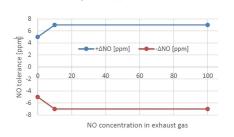
Dimensional drawing

THREAD GREASED WITH POS. 601 Gewinde mit Pos. 601 eingefettet

Technical data

- · High NOx & NH3 accuracy
- NO ≤±5* ppm @ 0 ppm
- NO ≤±8 %* @ 100 500 ppm
- Fast heat up
- Light off time <60 s
- Response time <1000 ms @12 m/s
- Operation before dew point end high water robustness
- · Robust against poisoning & soot
- Communication interface: J1939

MAR(IN) SEE POS. 998.0 J Ifturg siehe Pos. 996.0	


Part number	Voltage	Cable length
0281 050 074	12/24V	1040 mm

NO gas concentration - NO accuracy

Accuracy of NO @ low concentrations

CONNECTOR PINOUT:

PIN 2 : GND PIN 3 : CAN LOW PIN 4 : CAN HIGH

0 ppm	± 5 ppm
10 ppm	± 7 ppm
100 ppm	± 7 %
500 ppm	± 8 %
1500 ppm	± 10 %

Accessories

Connector housing	5-pin	Hirschmann 872-97800
Contact pins (silver plated)		

3.1 Pressure sensors

Differential pressure sensor

BOSCH

- ▶ Pressure range -100 to 500 kPa
- ► High level of accuracy
- ▶ With temperature compensation

Application

This sensor is used for either measurement of the differential pressure at the diesel particulate filter to determine its load condition, or fuel tank vapor pressure.

Design and operation

The piezo-resistive pressure sensor element and a suitable circuitry for signal amplification and temperature compensation are integrated on a silicon chip. The pressure measured operates to the back side of the silicon diaphragm, which is resistant to corrosive media and protected by a gel film against diaphragm cracks. The reference pressure operates from above to the active side of the silicon diaphragm. The upper chip surface and the wire-bonding onto the ceramic substrate are protected from corrosion by a anti-corrosive gel.

Explanation of characteristic data

 $p_{\rm e}$ Differential pressure $U_{\rm a}$ Output voltage (signal voltage)

 U_{V} Supply voltage

k Tolerance multiplier

D After endurance test

N As-new condition

Installation instructions

The sensor is designed for attachment to the bodywork or to the engine of motor vehicles. The sensor should be installed to avoid condensate accumulating in the pressure cell or the reference opening (pressure sampling point at top of intake manifold, pressure connection angled downwards etc.). As a general rule, the installation position should ensure that liquids cannot accumulate in the sensor and pressure hose. If it freezes, water in the sensor can lead to malfunction.

Differential pressure sensor

+90

Product type

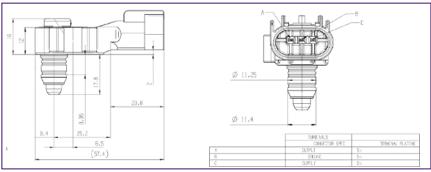
DS-T3

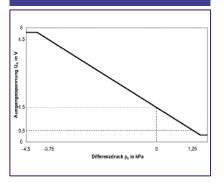
Part number

0 261 230 161

Picture

Technical data


Operating temperature


		min.	type	Max.
Pressure range (p_1p_2)	kPa	-3,75		+1,25
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Load current I _L at output	mA	-1,0		0,5
Response time $\tau_{10/90}$	ms			5,0
Operating temperature	°C	0		+80

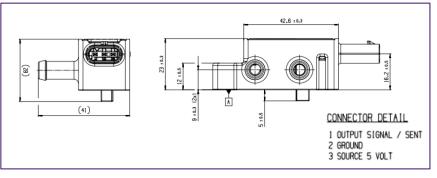
°C

-50

Dimensional drawings

Differential pressure sensor

Product type


LPS4-2DUO

Part number

0 261 232 0HD

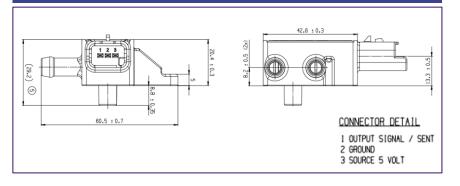
Dimensional drawings

Characteristic curve Y₁ 193 50 X₁ Absolute Pressure P_{abs} in kPa 220 X₂

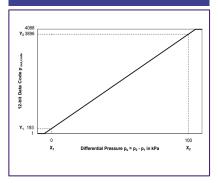
Technical data				
		min.	type	Max.
Pressure range (p_1p_2)	kPa	-3,75		+1,25
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Load current I _L at output	mA	15	20	30
Response time $\tau_{10/90}$	ms		1/2	4,7/3.4
Operating temperature	°C	-40		+140
Limit data				
Operating temperature	°C	-40		+150

Differential pressure sensor

Product type


PS-4-DPF

Part number


0 281 006 300

Dimensional drawings

Technical data min. Max. type Pressure range $(p_1...p_2)$ kPa 0 +100 Supply voltage U_V 5 5,25 4,75 Load current IL at output +10 17 20 mΑ 2,4 Response time $\tau_{10/90}$ ms °C Operating temperature -40 +140 Limit data °C Operating temperature -40 +150

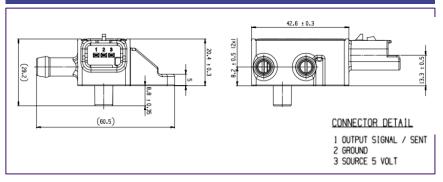
Differential pressure sensor

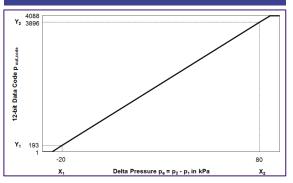
Product type

PS-4-GPF

Part number

0 261 232 051




Picture

		min.	type	Max.
Pressure range (p_1p_2)	kPa	-20		+80
Supply voltage U_V	V	4,5	5	5,5
Load current I_L at output	mA	-1,0		0,5
Response time $\tau_{10/90}$	ms			2,4
Operating temperature	°C	-40		150
Limit data				
Operating temperature	°C	-40		+150

Technical data

Dimensional drawings

Absolute pressure sensor

BOSCH

- ► Pressure range 0 1000 kPa
- ► High level of accuracy
- ► EMC protection better than 100 V m⁻¹
- ► With temperature compensation
- ► Version with additional integrated temperature sensor

Application

The sensor is used to measure the absolute intake-manifold or boost pressure. Some variants can be used to measure the absolute fuel or oil pressure. The version with integrated temperature sensor additionally measures the temperature of the detected medium.

Design and operation

The piezo-resistive pressure sensor element and a suitable circuitry for signal amplification and temperature compensation are integrated on a silicon chip. The measured pressure operates from above to the active side of the silicon diaphragm. Between the backside and a glass socket a reference vacuum is enclosed. The temperature sensor element is an NTC-resistor. By a suitable coating process the pressure and temperature sensor are protected against vapors and fluids existing in the intakemanifold, exhaust gas or exhaust gas condensate, however, may affect the sensor lifetime.

Explanation of characteristic data

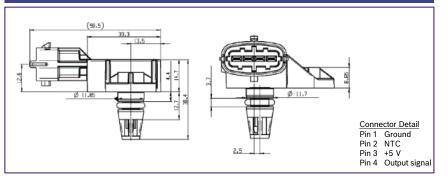
U_A Output voltage
 U_V Supply voltage
 k Tolerance multiplier
 D After endurance test
 N As-new condition

Installation instruction

The sensor is designed for attachment to a flat surface at the intake manifold of motor vehicles. The pressure connection and the temperature sensor jointly project into the intake manifold and are sealed off from the atmosphere by an O-ring. The sensor should be installed to avoid condensate accumulating in the pressure cell (pressure sampling point at top of intake manifold, pressure connection angled downwards etc.).

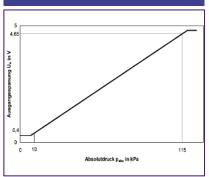
Absolute pressure sensor

Product type


DS-S3-TF

Part number

0 261 230 217


Dimensional drawings

Technical data

Parameter		min.	type	Max.
Features			I temperature ser	
Pressure range (p_1p_2)	kPa	10		115
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Load current I _L at output	mA	-1		0,5
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		+130
Limit data				
Operating temperature	°C	-40		+130

Characteristic curve

Accessories

Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm²; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Absolute pressure sensor

68

100

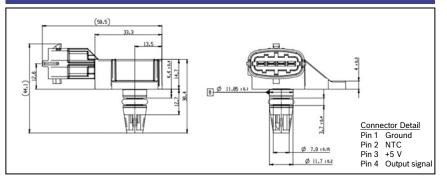
0,3

4.7

0,35

4,75

Product type


DS-S3-TF

Part number

0 261 230 245

Dimensional drawings

Technical data Max. Parameter min. type **Features** Integrated temperature sensor Pressure range $(p_1...p_2)$ kPa 115 ٧ 4,75 5 5.25 Supply voltage U_V 0.5 Load current I_1 at output mΑ -1 Response time $\tau_{10/90}$ ms 1.0 °C -40 +130 Operating temperature

kΩ

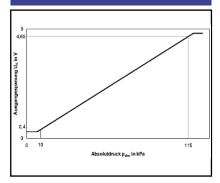
kΩ

٧

10

0.25

4.65


Load resistance to Us or ground R pull up

Lower limit at US = 5 V

Upper limit at US = 5 V

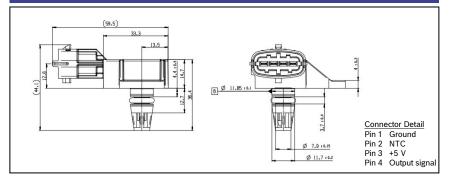
Load resistance to Us or ground R pull down

Characteristic curve

Accessories		
Connector housing	4-pin	1 928 404 745
Contact pins (tin-plated)	For Ø 0.51.0 mm²	1 928 498 056
Contact pins (tin-plated)	For Ø 1.52.5 mm²	1 928 498 057
Single-wire seal	For Ø 0.351.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

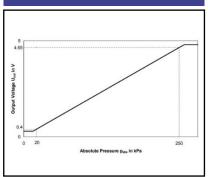
Absolute pressure sensor

Product type


DS-S3-TF

Part number

0 261 230 247



Dimensional drawings

rechnical data				
Parameter		min.	type	Max.
Features		Integrated	temperature se	nsor
Pressure range (p_1p_2)	kPa	20		250
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Load current I _L at output	mA	-1		0,5
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		+130
Lower limit at US = 5 V Upper limit at US = 5 V	V	0.25 4.65	0,3 4,7	0,35 4,75

Characteristic curve

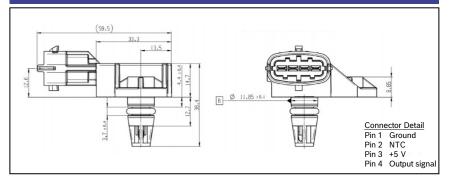
Accessories

Connector housing	4-pin	1 928 404 745
Contact pins (gold-plated)	For Ø 0.51.0 mm²	1 928 498 054
Contact pins (gold-plated)	For Ø 1.52.5 mm²	1 928 498 055
Single-wire seal	For Ø 0.351.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

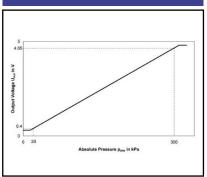
Absolute pressure sensor

Product type

DS-S3-TF


Part number

0 261 230 280


Dimensional drawings

Technical data

recillical data				
Parameter		min.	type	Max.
Features		Integrated	temperature sen	sor
Pressure range (p_1p_2)	kPa	20		300
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Load current I_{L} at output	mA	-1		0,5
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		+130
Lower limit at US = 5 V Upper limit at US = 5 V	V	0.25 4.65	0,3 4,7	0,35 4,75

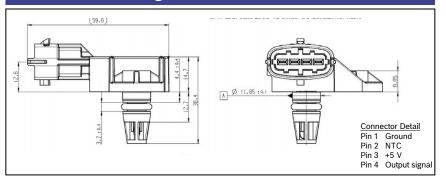
Characteristic curve

Accessories

Connector housing	4-pin	1 928 404 745
Contact pins (tin-plated)	For Ø 0.51.0 mm ²	1 928 498 056
Contact pins (tin-plated)	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seal	For Ø 0.351.0 mm ²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

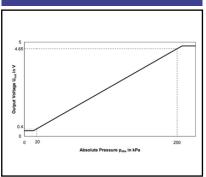
Absolute pressure sensor

Product type


DS-S3-TF

Part number

0 261 230 283



Dimensional drawings

Technical data				
Parameter		min.	type	Max.
Features		Integrated	temperature sen	isor
Pressure range (p_1p_2)	kPa	20		250
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Load current I _L at output	mA	-1		0,5
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		+130
Lower limit at US = 5 V Upper limit at US = 5 V	V	0.25 4.65	0,3 4,7	0,35 4,75

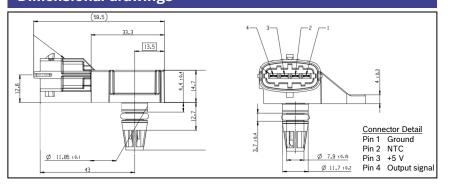
Characteristic curve

Accessories

Connector housing	4-pin	1 928 403 736
Contact pins (tin-plated)	For Ø 0.51.0 mm ²	1 928 498 056
Contact pins (tin-plated)	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seal	For Ø 0.351.0 mm ²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm ²	1 928 300 600
Dummy plug		1 928 300 601

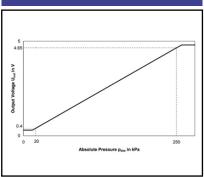
Absolute pressure sensor

Product type


DS-S3-TF

Part number

0 261 230 302



Dimensional drawings

Technical data				
Parameter		min.	type	Max.
Features Integrated temperature sensor				
Pressure range (p_1p_2)	kPa	20		250
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Load current I _L at output	mA	-1		0,5
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		+130
Lower limit at US = 5 V Upper limit at US = 5 V	V	0.25 4.65	0,3 4,7	0,35 4,75

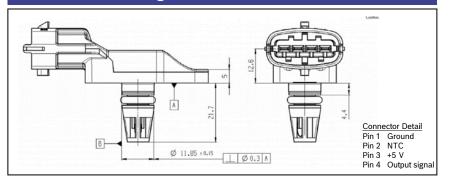
Characteristic curve

Accessories

Connector housing	4-pin	1 928 404 745
Contact pins (gold-plated)	For Ø 0.51.0 mm²	1 928 498 054
Contact pins (gold-plated)	For Ø 1.52.5 mm²	1 928 498 055
Single-wire seal	For Ø 0.351.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

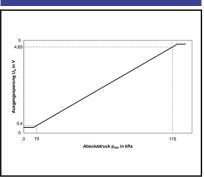
Absolute pressure sensor

Product type


DS-S3-TF

Part number

0 261 230 310


Dimensional drawings

Technical data

recillical data				
Parameter		min.	type	Max.
Features		Integrated	temperature se	nsor
Pressure range (p_1p_2)	kPa	10		115
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		+130
Load current I _L at output	mA	-1		0,5
Operating temperature	°C	-40		+130
Lower limit at US = 5 V Upper limit at US = 5 V	V	0.25 4.65	0,3 4,7	0,35 4,75

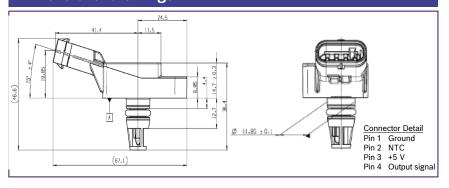
Characteristic curve

Accessories

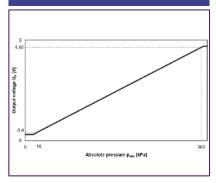
Connector housing	4-pin	1 928 404 745
Contact pins (gold-plated)	For Ø 0.51.0 mm²	1 928 498 054
Contact pins (gold-plated)	For Ø 1.52.5 mm²	1 928 498 055
Single-wire seal	For Ø 0.351.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

Absolute pressure sensor

Product type


DS-S3-TF

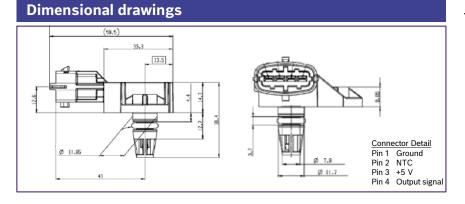
Part number


0 261 230 416

Dimensional drawings

Technical data Max. Parameter min. type **Features** Integrated temperature sensor Pressure range $(p_1...p_2)$ kPa 10 300 Supply voltage U_V ٧ 4,75 5 5,25 1 Response time $\tau_{10/90}$ ms °C Operating temperature -40 +130 Limit data °C Operating temperature -40 +130

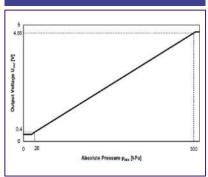
Absolute pressure sensor


Product type

DS-S3-TF

Part number

0 281 006 028



Picture

Technical data				
Parameter		min.	type	Max.
Features		Integrated	temperature se	nsor
Pressure range (p_1p_2)	kPa	20		300
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		+130
Limit data				
Operating temperature	°C	-40		+130

Characteristic curve

Accessories		
Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Absolute pressure sensor

type

2,5 ± 5 %

Integrated temperature sensor

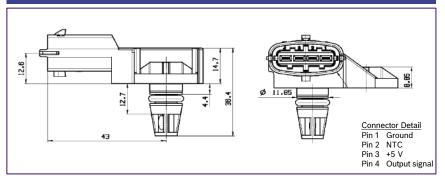
Max.

300

5.25

10

Product type


DS-S3-TF

Part number

0 281 006 076

Dimensional drawings

Picture

- Cuppiy Voltage CV	•	1,10	 0,20
Load current I_{L} at output	mA	-1	0,5
Response time $\tau_{10/90}$	ms		1
Operating temperature	°C	-40	+130
Limit data			
Operating temperature	°C	-40	+130
Temperature sensor			
Measuring range	°C	-40	+130

mΑ

kΩ

s

kPa

min.

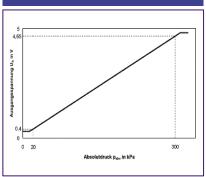
4.75

Temperature/time constant $\tau_{63}^{2)}$

Measurement current¹⁾

Rated resistance at +20°C

Technical data


Pressure range $(p_1...p_2)$

Supply voltage U.

Parameter

Features

Characteristic curve

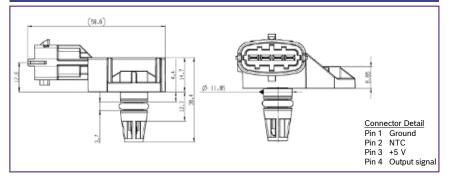
Accessories		
Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm²; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

¹⁾ Operation with 1 $k\Omega$ series resistance.

²⁾ In air with flow velocity 6 m/s.

Absolute pressure sensor

Product type

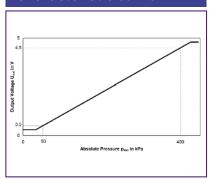

DS-S3-TF

Part number

0 281 006 102

Dimensional drawings

Technical data


Parameter		min.	type	Max.
Features	Integrated temperature sensor			
Pressure range (p_1p_2)	kPa	50		400
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Load current I_{L} at output	mA	-1		0,5
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		+130
**				

Limit data

Lilliit data				
Operating temperature	°C	-40		+130
Measurement current ¹⁾	mA			1
Rated resistance at +20°C	kΩ		2,5 ± 5 %	
Temperature/time constant $ au_{63}$ ²⁾	s			10

¹⁾ Operation with 1 k Ω series resistance.

Characteristic curve

Accessories

Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm²; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

²⁾ In air with flow velocity 6 m/s.

Pressure sensor for CNG

- ▶ Pressure range 20 1000 kPa
- ► High level of accuracy
- ► EMC protection up to 100 Vm⁻¹
- With temperature compensation
- ► Ratiometric output signal
- All sensors and sensor cells are resistant against natural gas (CNG)

Application

The sensor is used to measure and regulate the absolute pressure and the temperature in the fuel rail pipe of natural-gas systems that are operated with CNG. The fuel pressure sensor is resistant against natural gas (CNG).

Design and operation

The piezo-resistive pressure sensor element and a suitable circuitry for signal amplification and temperature compensation are integrated on a silicon chip. The measured pressure operates from above to the active side of the silicon diaphragm. The temperature sensor element is an NTC-resistor.

Explanation of characteristic data

U_A Output voltage
 U_V Supply voltage
 k Tolerance multiplier
 D After endurance test
 N As-new condition

Installation instructions

The sensor has been designed for attachment to a flat surface. Both pressure port piece and temperature sensor project into the line, and sealing from the atmosphere is by means of an 0-ring. The hole on the customer side for holding and fastening the sensor in place shall be such that a permanently tight sit at the pressure port as well as stability towards the measuring medium will be assured. The installed position in the vehicle shall be only on the side of medium purity. Neither substances that can freeze nor any condensates at the pressure port are allowed, and neither shall be introduced during transportation of assembly.

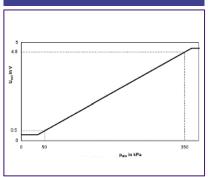
Pressure sensor for CNG

Product type


DS-G3-TF

Part number

0 261 230 373


Dimensional drawings

Technical data

	min.	type	Max.
	integrated	temperature se	nsor
	approved	for CNG	
kPa	50		350
V	4,75	5	5,25
mA	6	9	12,5
mA	-1		0,5
kΩ	5		10
V	0,25	0,3	0,35
V	4,65	4,7	4,75
kΩ	1	1,6	2
kΩ	1	1,6	2
ms		1	
°C	-40		120
	V mA mA kΩ V V kΩ kΩ	integrated approved kPa 50 V 4,75 mA 6 mA -1 kΩ 5 V 0,25 V 4,65 kΩ 1 kΩ 1 ms	integrated temperature se approved for CNG kPa 50 V 4,75 5 mA 6 9 mA -1 kΩ 5 V 0,25 0,3 V 4,65 4,7 kΩ 1 1,6 ms 1

Characteristic curve

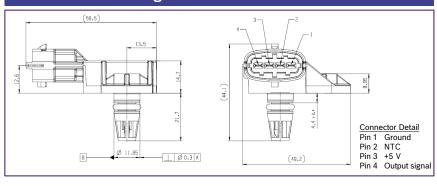
Accessories

Connector housing	4-pin	1 928 403 736
Contact pins (tin-plated)	For Ø 0.51.0 mm²	1 928 498 056
Contact pins (tin-plated)	For Ø 1.52.5 mm²	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

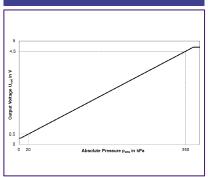
Pressure sensor for CNG

Product type

DS-G3-TF


Part number

0 261 230 499


Dimensional drawings

Technical data

recinical data				
Parameter		min.	type	Max.
Features		integrated	temperature ser	nsor
Application/medium		approved	for CNG	
Pressure range (p_1p_2)	kPa	20		350
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Current input I_v at $U_V = 5 \text{ V}$	mA	6	9	12,5
Load current I_L at output	mA	-1		0,5
Load resistance to ground or U_{ν}	kΩ	5		10
Lower limit at U_V = 5 V	V	0,25	0,3	0,35
Upper limit at $U_V = 5 \text{ V}$	V	4,65	4,7	4,75
Output resistance to ground, U_V open	kΩ	1	1,6	2
Output resistance to U_{V_i} ground open	kΩ	1	1,6	2
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		120

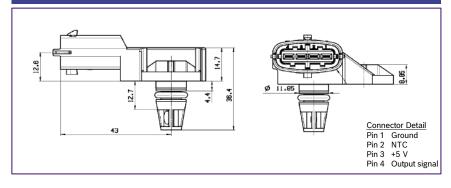
Characteristic curve

Accessories

Connector housing	4-pin	1 928 403 736
Contact pins (tin-plated)	For Ø 0.51.0 mm²	1 928 498 056
Contact pins (tin-plated)	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

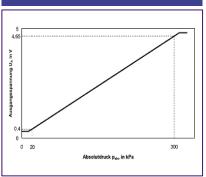
Pressure sensor for CNG

Product type


DS-G3-TF

Part number

0 261 230 00J


Dimensional drawings

Technical data

recilifical data				
Parameter		min.	type	Max.
Features		integrated	temperature ser	nsor
Application/medium		approved	for CNG	
Pressure range (p_1p_2)	kPa	20		300
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Current input I_v at $U_V = 5 \text{ V}$	mA	6	9	12,5
Load current I_L at output	mA	-1		0,5
Load resistance to ground or U_{ν}	kΩ	5		10
Lower limit at $U_V = 5 \text{ V}$	V	0,25	0,3	0,35
Upper limit at U_V = 5 V	V	4,65	4,7	4,75
Output resistance to ground, U_V open	kΩ	1	1,6	2
Output resistance to $U_{V,}$ ground open	kΩ	1	1,6	2
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		120

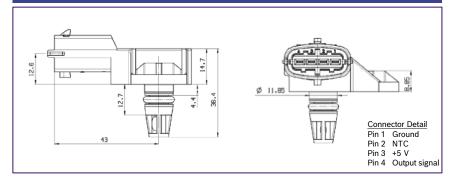
Characteristic curve

Accessories

Connector housing	4-pin	1 928 403 736
Contact pins	For Ø 0.51.0 mm²	1 928 498 056
Contact pins	For Ø 1.52.5 mm²	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

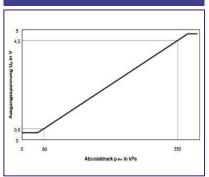
Pressure sensor for CNG

Product type


DS-G3-TF

Part number

0 261 230 01G


Dimensional drawings

Technical data

recilifical data				
Parameter		min.	type	Max.
Features		integrated	temperature ser	nsor
Application/medium		approved	for CNG	
Pressure range (p_1p_2)	kPa	50		400
Supply voltage $U_{\rm V}$	V	4,75	5	5,25
Current input I_v at $U_V = 5 \text{ V}$	mA	6	9	12,5
Load current I_L at output	mA	-1		0,5
Load resistance to ground or U_{ν}	kΩ	5		10
Lower limit at $U_V = 5 \text{ V}$	V	0,25	0,3	0,35
Upper limit at U_V = 5 V	V	4,65	4,7	4,75
Output resistance to ground, U_V open	kΩ	1	1,6	2
Output resistance to $U_{V,}$ ground open	kΩ	1	1,6	2
Response time $\tau_{10/90}$	ms			1
Operating temperature	°C	-40		120

Characteristic curve

Accessories

Connector housing	4-pin	1 928 403 736
Contact pins (tin-plated)	For Ø 0.51.0 mm²	1 928 498 056
Contact pins (tin-plated)	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm ²	1 928 300 600
Dummy plug		1 928 300 601

Medium pressure sensor

BOSCH

- Pressure range 5 to 50 bar (absolute or relative)
- ► Highly precise measurement of fuel and oil pressure
- Integrated temperature sensor optional

Application

The medium-pressure sensor ensures rapid and highly precise measurement of fuel and oil pressure in every kind of combustion engine (gasoline, diesel, CNG, LPG) and transmission. The measurement is used to control the amount of fuel or oil supplied by the pump.

Design and operation

The sensor measures pressure by using a resistance bridge to evaluate the distortion of a silicon membrane. An integrated temperature sensor is optional. The pressure sensor can be equipped with a range of hydraulic interfaces and connectors. An optional temperature sensor can be integrated into the medium-pressure sensor. It measures temperature using an NTC (negative temperature coefficient) resistor connected to the evaluation element in the sensor. The pressure sensor can transmit the pressure and temperature readings as analog or digital signals (SENT).

Explanation of characteristic data

 $U_{\rm A}$ Output voltage $U_{\rm V}$ Supply voltage bar Pressure $U_{\rm S}$ Input voltage p Pressure [MPa] $C_{\rm O}$ 0.1 $C_{\rm 1}$ 0.8 · p / P_N

P_N Rated pressure [MPa]

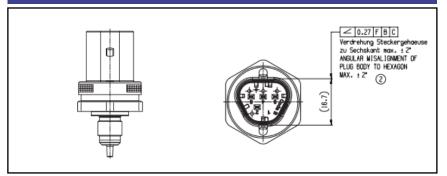
Installation instruction

A suitable installation in the vehicle should be used to ensure that water cannot collect on the membrane.

The pressure sensor may only be handled at the hexagon while screwing. While mounting, a socket or ring wrench has to be used. This wrench may only be put at the hexagon and must cover it safely. Tilting or tipping of the socket or ring wrench with the device connector must be avoided. Open-end wrenches are no permitted for the assembly. While assembling the sensor, the device connector should not be rotated against the pressure port, else the sensor will be damaged. After the pressure sensor has been screwed into its installation position, it is tightened at the hexagon.

Medium pressure sensor

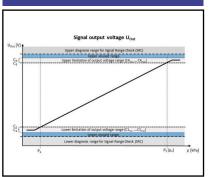
Product type


MPS1-TF

Part number

0 261 544 01F

Dimensional drawings



Technical data

Features	Integrated temperature sensor		
Pressure range (p_1p_2)	bar	0	10
Max. overpressure	bar		20
Supply voltage $U_{\rm V}$	٧	4.75	5.25
Supply current Is	mA		16.5
Thread			M 10 x 1
Application		Diesel and gasoline	
Max. Supply voltage $U_{\rm s}$	V		18
Load capacitance to ground	nF		13
Response time $\tau_{10/90}$	ms		2.0
Operating temperature	°C	-40	+150
Measurement current ¹⁾	mA		1

¹⁾ Operation with 1 k Ω series resistance.

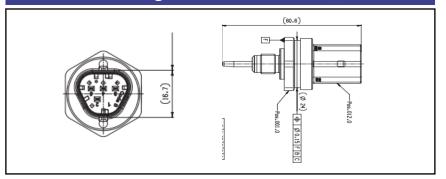
Characteristic curve

Accessories

Wire size range	For Ø 0,350,5 mm ²	
Connector housing (1x)		1 928 405 159
Matrix terminal (4x)		1 928 498 143
Mating single wire seal (4x)		1 928 300 934
Cavity Plug (1x)		1 928 300 935

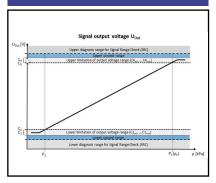
Medium pressure sensor

Product type


MPS1-TF-CNG

Part number

0 261 544 00K


Dimensional drawings

Technical data 0,5-16 Pressure range bar U, 18 Max. feed voltage U_{v} $5 \pm 0,25$ Supply voltage Load capacitance to ground nF 13 M 10 x 1 Thread Application/medium CNG °C -40 ... +150 Temperature range 32 Max. overpressure bar p_{max} Response time τ_{ini} ms 2.0

*RME rapeseed methyl ester.

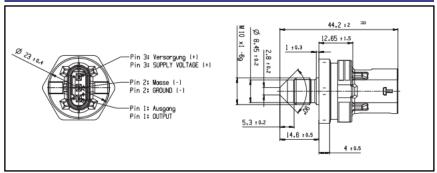
Characteristic curve

Accessories		
Connector housing		1 928 405 159
Contact pins (silver-plated)	For Ø 0,350,5 mm²	1 928 498 143
Single-wire seal		1 928 300 934
Dummy plug		1 928 300 935

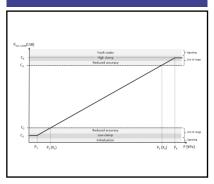
Medium pressure sensor

Product type

MPS1-D


Part number

0 261 544 018



Technical data			
Pressure range	P_{N}	bar	0,48-11
Max. feed voltage	U _s	V	18
Supply voltage	U_{V}	V	5 ± 0,25
Thread			M 10 x 1
Application/medium		Diesel and gasoline	
Temperature range		°C	-40 +80
Max. overpressure	p_{max}	bar	22

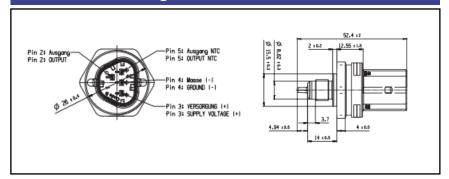
Dimensional drawings

*RME rapeseed methyl ester.

Medium pressure sensor

2.0

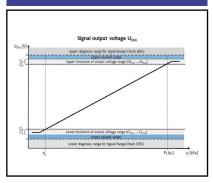
Product type


MPS1-TF

Part number

0 261 544 02G

Dimensional drawings


Technical data 10 Pressure range bar U, ٧ 18 Max. feed voltage U_{v} ٧ Supply voltage 5 ± 0.25 Load capacitance to ground nF 13 M 10 x 1 Thread Application/medium Oil, Diesel, gasoline -40 ... + 150 Temperature range 20 Max. overpressure bar p_{max}

 τ_{ini}

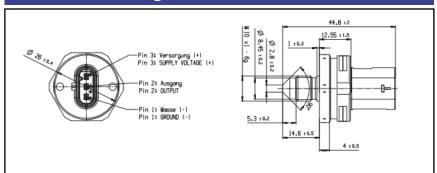
ms

*RME rapeseed methyl ester.

Response time

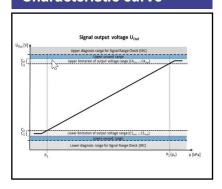
Medium pressure sensor

Product type


MPS1-A

Part number

0 261 232 02X



Dimensional drawings

Technical data			
Pressure range	P_{N}	bar	10
Max. feed voltage	U _s	V	18
Supply voltage	U _V	V	5 ± 0,25
Load capacitance to ground		nF	13
Thread			M 10 x 1
Application/medium		Diesel, gasoline	
Temperature range		°C	-40 +80
Max. overpressure	p_{max}	bar	20
Response time	$ au_{ini}$	ms	2.0

*RME rapeseed methyl ester.

High pressure sensor

- ► Pressure range 5 340 MPa
- Ratiometric signal evaluation (relative to supply voltage)
- Self-monitoring offset and sensitivity.
- Excellent media resistance (stainless steel)
- Resistant to brake fluids, mineral oils, fuel, water and air
- Protection against reverse polarity, overvoltage and short circuit of the output to supply voltage or ground

Application

High pressure sensors are used in motor vehicles to measure the pressure in the fuel rail of directinjection gasoline and common-rail diesel engines or further hydraulic applications.

Design and operation

Use is made of polysilicon metal thin-film strain gauge elements. These are connected to form a Wheatstone bridge. This permits good signal utilization and temperature compensation. The measurement signal is amplified in an evaluation IC and corrected with regard to offset and sensitivity. Further temperature compensation is then implemented, so that the calibrated measurement cell and ASIC unit exhibits only a low degree of dependence on temperature. The evaluation IC also incorporates a diagnosis function for detection of the following possible faults:

- Break in bonding wire to measurement cell.
- Break in any signal wire at any point.
- Break in supply and ground wire at any point.

Explanation of characteristic data

U_{A}	Output voltage
U_{V}	Supply voltage
bar	Pressure
U_{S}	Input voltage
р	Pressure [MPa]
Co	0.1
C ₁	$0.8 \cdot p / P_N$
P_N	Rated pressure [MPa]

Installation instruction

The pressure sensor is designed for different use cases, which have different sealing concepts. Water must not be allowed to collect on the membrane.

The pressure sensor consists of a pressure port of metal and a housing of plastic. The pressure port has a sealing surface and a hexagon. The housing must not be twisted against the pressure port during installation. The pressure sensor has to be handled during screwing-in only at the hexagon. Tools for installation, e. g. socket wrench, must be applied only at the hexagon. After the pressure sensor has been correctly tightened to its installation position, a gap remains between the hexagon of the pressure sensor and the fuel rail or similar interface.

3.5 Pressure sensors High pressure sensor (hydraulic applications)

Hydraulic sensor program

Nominal Pressure	series number	electrical Interface	mechanical interface
50 bar	0261546003	analog	G1/4 acc. ISO1179-1 w. form gasket
260 bar	0261545108	analog	M 10 x 1 acc. ISO 14405-1
300 bar	0261545115	analog	M 10 x 1 acc. ISO 14405-1
400 bar	026154600A	analog	M14x1,5 acc. ISO 6149-1 w. O-Ring
500 bar	0261547012	digital (SENT)	ISO 16750.3
1800 bar	0281007302	analog	M 18 x 1.5 acc. ISO 14405-1
2000 bar	0281006372	analog	ISO 26262

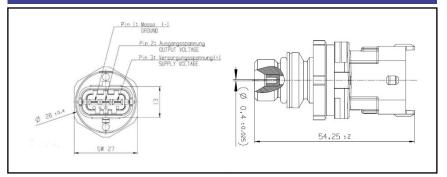
Attention: program is regularly adjusted based on market requirements.

3.5 Pressure sensors High pressure sensor

2500

1.0

Product type

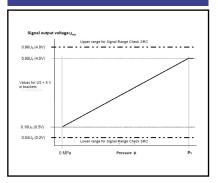

HPS4

Part number

0 261 545 188

Dimensional drawings

Technical data


- Commount data			
Pressure range	P_N	bar (Mpa)	260 (26)
Thread			M10 x1
Connector			Compact 1.1
Application/medium			CNG
Max. feed voltage	U_s	V	18
Supply voltage	U_V	V	5 ± 0,25
Supply current	l _s	mA	15
Load capacitance to ground		nF	13
Temperature range		°C	- 40+ 140
Max. overpressure	p _{max}	bar	400

 $\tau_{10/90}$

ms

Rupture pressure
Response time

Characteristic curve

Accessories		
Connector housing	3-pin	1 928 403 966
Contact pins (gold-plated)	For Ø 0.51.0 mm²	1 928 498 054
Contact pins (gold-plated)	For Ø 1.52.5 mm²	1 928 498 055
Single-wire seal	For Ø 0.351.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

¹⁾ FS = Full Scale

High pressure sensor (hydraulic applications)

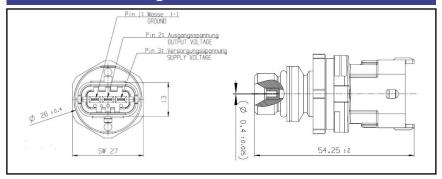
13

840

4500 0,2...0,8

- 40 ...+ 130

Product type


HPS4

Part number

0 261 546 00A

Dimensional drawings

Picture

Pressure range	P _N	bar (Mpa)	400 (40)
Thread			M 14 x 1,5
Connector			Compact 1.1
Application/medium			Hydraulic applications with oil or hydraulic fluids
Max. feed voltage	U _s	V	18
Supply voltage	U _v	V	5 ± 0,25
Supply current	I _s	mA	15

°C

bar

bar

ms

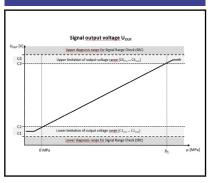
Technical data

Load capacitance to ground

Temperature range

Max. overpressure

Rupture pressure


Response time

Attention: product also available with other pressure ranges, such as 600 bar. For details, please approach us via contact page.

 p_{max}

 $\tau_{10/90}$

Characteristic curve

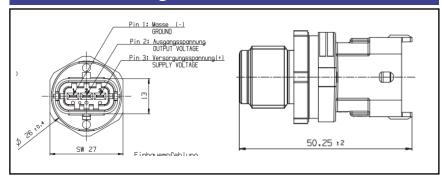
Accessories		
Connector housing	3-pin	1 928 403 966
Contact pins (gold-plated)	For Ø 0.51.0 mm²	1 928 498 054
Contact pins (gold-plated)	For Ø 1.52.5 mm²	1 928 498 055
Single-wire seal	For Ø 0.351.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

¹⁾ FS = Full Scale

High pressure sensor (diesel)

Product type

RPS4.2


Part number

0 281 007 302

Picture

Dimensional drawings

Technical data

recilifical data			
Pressure range	P_{N}	bar (MPa)	1800 (180)
Max. feed voltage	U _s	V	15
Supply voltage	U_{V}	V	5 ± 0,25
Load capacitance to ground		nF	13
Thread			M 18 x 1.5
Application/medium			diesel
Temperature range		°C	-40 +130
Max. overpressure	p_{max}	bar	
Rupture pressure	p_{berst}	bar	
Response time	$ au_{\text{ini}}$	ms	2,0

*RME rapeseed methyl ester.

Characteristic curve

Output Voltage Uout fo	r 5V characteristic I	ine	
0.985U ₈ (4.925V)	Upper R	tange for Signal Range Check SRC	
0.90U _S (4.5V)			
0.10U ₅ (0.5V)	/		
0.013U ₈ (0.065V)	Lower R	lange for Signal Range Check SRC	
	MPa	Pressure p	D ₀

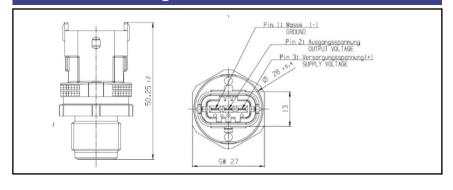
Accessories

Connector housing	1 928 403 966	
Contact pins (gold-plated)	For Ø 0.51.0 mm²	1 928 498 054
Single-wire seal		1 928 300 599

High pressure sensor (diesel)

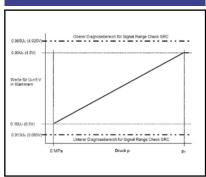
Product type

RPS4.2


Part number

0 281 002 930

Dimensional drawings


Techn

rechnical data			
Pressure range	P_{N}	bar (MPa)	2000 (200)
Max. feed voltage	U_{s}	V	16
Supply voltage	U_{V}	V	5 ± 0,25
Load capacitance to ground		nF	13
Thread			M 18 x 1,5
Application/medium			Diesel or biodiesel*
Temperature range		°C	- 40+ 130
Max. overpressure	p_{max}	bar	2300
Rupture pressure	p_{berst}	bar	4000
Response time	$ au_{ini}$	ms	2

*RME rapeseed methyl ester.

Attention: product also available with other pressure ranges, such as 1500 or 1800 bar. For details, please approach us via contact page.

Characteristic curve

Accessories		
Connector housing	3-pin	1 928 403 966
Contact pins (gold-plated)	For Ø 0.51.0 mm²	1 928 498 054
Contact pins (gold-plated)	For Ø 1.52.5 mm²	1 928 498 055
Single-wire seal	For Ø 0.351.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

4.1 Rotational - Speed sensors

Sensors for Camshaft and Crankshaft Applications

BOSCH

- Precise and reliable digital measurement of rotation speed, angle position and rotation direction (crankshaft sensors)
- Non-contact measurement
- Hall IC sensor with open collector output
- Not susceptible to dirt
- Resistant to mineral oil products (fuel, engine oil)
- High robustness against electromagnetic interference (EMC)

Application

Hall speed sensors are ideal for noncontact, wear-free measurement of crankshaft speed, camshaft speed and similar applications.

Design and operation

Speed sensors are integral components of the engine management system in motor vehicles, typically installed in the engine or similar compartment. These sensors provide signals used to determine the position and rotational speed of the wheels, which are then processed by the ECU (Engine Control Unit). By detecting the teeth of a ferromagnetic target wheel, the sensor performs signal processing through an ASIC (Application-Specific Integrated Circuit) and transmits the processed signal to the ECU.

Crankshaft sensors identify additionally the rotation direction of the crankshaft wheel, enabling the detection of both forward and backward rotations during engine operation. This information allows the ECU to calculate the absolute position of the crankshaft after the engine stops, facilitating the implementation of a Start-Stop function in the engine control unit.

These speed sensors are equipped with a permanent magnet and a Hall IC (Integrated Circuit). As the ferromagnetic target wheel rotates in front of the sensor, the magnetic field of the internal magnet is modulated at the sensor's Hall probe(s). The sensor detects changes in the magnetic field at the transition between the tooth and slot of the ferromagnetic target wheel.

Explanation of characteristic data

n Rotation Speed $U_{\rm S}$ Sensor supply voltage $U_{\rm S_OUT}$ Voltage on Rpull_up Resistor $I_{\rm S}$ Sensor supply current $t_{\rm f}$ Fall time (trailing signal edge). $t_{\rm c}$ Rise time (leading signal edge).

Installation instructions

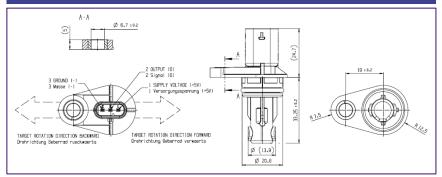
- Please refer to installation conditions given in the offer drawing and Technical Customer Documentation (TCD)
- Route the connecting cables away from interference sources like ignition cables.
- Connect the ground connection of the sensor to the ECU ground pin to prevent issues arising from trigger level shifting and ground offsets.
- Protect the sensor against the destructive action of static discharge during insatllation.

4.1 Rotational-speed sensors

Sensor for Camshaft Applications



Product type


RSC-D5

Part number

0 261 210 389

Dimensional drawings

Key Features:

- Differential Hall Sensor
- Rotation Direction Detection
- Open Collector Interface (3-wire)
- Utilizes the Latest ASIC Generation for Optimal Accuracy and Repeatability
- Suitable for High-Speed Applications (up to 10,000 rpm with a 60-2 target wheel)

Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min. ⁻¹
Maximum trigger-wheel speed, forward	n _{max.}	10 000 min. ⁻¹
Maximum trigger-wheel speed, reverse	n _{max.}	4 000 min. ⁻¹
Sensor switching position		Near tooth centre
Rotation Direction Detection		Yes
Working air gap range		0.2 mm 1.8 mm
Rated supply voltage	Us nom	5 V

Sensor switching position		Near tooth centre
Rotation Direction Detection		Yes
Working air gap range		0.2 mm 1.8 mm
Rated supply voltage	$U_{\rm S, nom}$	5 V
Supply voltage range	Us	4.55.5V
Supply current	I_{V}	≤ 15 mA
Pull-Up Resistor in ECU	R _{PULL-UP}	1 kOhm 3 kOhm
Sensor Output voltage LOW	U _{OUT_LOW}	≤ 0.5 V
Sensor Output voltage HIGN	U _{OUT_HIGH}	≥ 0.9 x U _{S_OUT}
Output fall time (high – low) 90 % 10 %, U _{S,O} = 5.0 V	<i>t</i> _f ¹)	≤ 1 µs
Output rise time (low – high) 10 % 90 %, U _{S,O} = 5.0 V	t _f ²)	≤ 10 µs
Steady-state temperature in sensor and transition zone		-40°C+160°C
Steady-state temperature in connector zone		-40°C+150°C
1, 2) Depends on ECU input circuit (e.g. Rpull_up value)		

Depends on ECU input circuit (e.g. Rpull_up value)

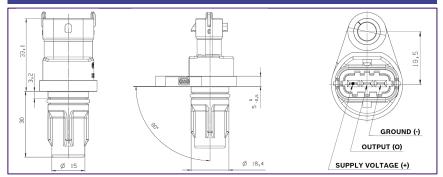
Accessories

Connector housing	3-pin, coding B	Hirschmann 872-97800
Contact pins (gold plated)		

4.1 Rotational-speed sensors

Sensor for Camshaft Applications

Product type


PG-3-8

Part number

0 232 103 10K

Dimensional drawings

Key Features:

- · Single Hall Sensor
- Twist Insensitive Mounting (TIM) Capability
- · True Power On (TPO) for Quick Engine Start
- Open Collector Interface (3-wire) Robust Design

Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min. ⁻¹
Maximum trigger-wheel speed	n _{max.}	4500 min. ⁻¹
Working air gap range		0.2 mm 1.8 mm
Sensor switching position		Near tooth edge
Rated supply voltage	$U_{S,nom}$	5 V
Supply voltage range	Us	4.5 V5.5 V
Supply current	Is	< 9 mA
Pull-Up Resistor in ECU	$R_{ ext{PULL-UP}}$	1 kOhm 10 kOhm
Sensor Output voltage LOW	U_{OUT_LOW}	≤ 0.5 V
Sensor Output voltage HIGN	U_{OUT_HIGH}	≥ 0.9 x <i>U</i> _{S_OUT}
Output fall time (high – low) 90 % 10 %, U _{S,O} = 5.0 V	$t_{\rm f}^{-1}$)	≤ 4 µs
Output rise time (low – high)	<i>t</i> 2)	< 10 us

Steady-state temperature in sensor and transition zone

Steady-state temperature in connector zone 3)

10 % ... 90 %, U_{S.O} = 5.0 V

Programming Option

^{3) -40...+150 °}C permissible in connector zone for short time

Accessories		
Connector housing	3-pin	1 928 403 966
Contact pins (gold plated)	For Ø 0.51.0 mm²; Contents: 100 x	1 928 498 054
Contact pins (gold plated)	For Ø 1.52.5 mm ² ; Contents: 100 x	1 928 498 055
Single-wire seal	For Ø 0.51.0 mm²; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Accessories are not included in the scope of delivery of the sensor and therefore to be ordered separately as required.

 t_f^2

≤ 10 µs

-40°C...+160°C

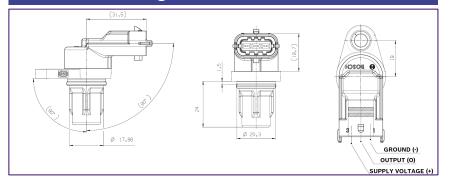
-40°C...+130°C

50TL05/12-88

^{1,2)} Depends on ECU input circuit (e.g. Rpull_up value)

Sensor for Camshaft Applications

Product type


PG-3-8

Part number

0 232 103 10W

Dimensional drawings

Key Features:

- Single Hall Sensor
- Twist Insensitive Mounting (TIM) Capability
- True Power On (TPO) for Quick Engine Start
- Open Collector Interface (3-wire)
- Using Best-in-Class Plastic Material (PPS) with High Resistance to Media and Humidity

Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min. ⁻¹
Maximum trigger-wheel speed	n _{max.}	4500 min. ⁻¹
Working air gap range		0.2 mm 1.8 mm
Sensor switching position		Near tooth edge
Rated supply voltage	$U_{S,nom}$	5 V
Supply voltage range	Us	4.5 V5.5 V
Supply current	Is	< 9 mA
Pull-Up Resistor in ECU	R _{PULL-UP}	1 kOhm 10 kOhm
Sensor Output voltage LOW	U_{OUT_LOW}	≤ 0.5 V
Sensor Output voltage HIGN	$U_{\mathrm{OUT_HIGH}}$	≥ 0.9 x <i>U</i> _{S_OUT}
Output fall time (high – low) 90 % 10 %, U _{S,O} = 5.0 V	$t_{\rm f}^{1})$	≤ 4 µs
Output rise time (low – high) 10 % 90 %, U _{S,0} = 5.0 V	<i>t</i> _f ²)	≤ 10 µs
Steady-state temperature in sensor and transition zone		-40°C+150°C
Steady-state temperature in connector zone ³)		-40°C+130°C
Programming Option		50TL05/12-88

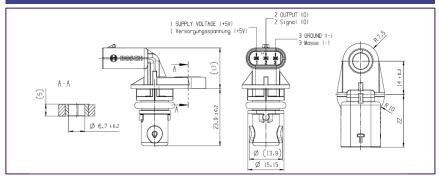
^{1, 2)} Depends on ECU input circuit (e.g. Rpull up value)

^{3) -40...+150 °}C permissible in connector zone for short time

Accessories		
Connector housing	3-pin	1 928 403 966
Contact pins (tin plated)	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins (tin plated)	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm ² ; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

4.1 Rotational-speed sensors **Sensor for Camshaft Applications**

Product group


CPS-4

Part number

0 232 103 502

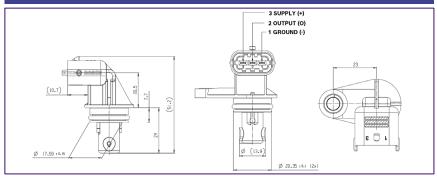
Dimensional drawings

Maximum trigger-wheel speed Working air gap range Sensor switching position Rated supply voltage Supply voltage range Supply current	n _{min.} n _{max.} U _{S, nom} U _S	0 min. ⁻¹ 4500 min. ⁻¹ 0.2 mm 1.8 mm Near tooth edge 5 V or 12V 4.75 V16 V
Working air gap range Sensor switching position Rated supply voltage Supply voltage range Supply current	U _{S, nom}	0.2 mm 1.8 mm Near tooth edge 5 V or 12V
Sensor switching position Rated supply voltage Supply voltage range Supply current	U _s	Near tooth edge 5 V or 12V
Rated supply voltage Supply voltage range Supply current	U _s	5 V or 12V
Supply voltage range Supply current	U _s	
Supply current		4.75 V16 V
	1	
Pull-Up Resistor in ECU	I _s	< 10mA
	R _{PULL-UP}	1 kOhm 10 kOhm
Sensor Output voltage LOW	U _{OUT_LOW}	≤ 0.5 V
Sensor Output voltage HIGN	U _{OUT_HIGH}	≥ 0.9 x <i>U</i> _{S_OUT}
Output fall time (high – low) 90 % 10 %, U _{S,O} = 5.0 V	t _f 1)	≤ 4 µs
Output rise time (low – high) 10 % 90 %, U _{S,O} = 5.0 V	t _f ²)	≤ 10 µs
Steady-state temperature in sensor and transition zone		-40°C+150°C
Steady-state temperature in connector zone		-40°C+150°C
Programming Option		70TL05-86

^{1, 2)} Depends on ECU input circuit (e.g. Rpull up value)

Sensor for Camshaft Applications

Product type


CPS-4

Part number

0 232 103 506

Dimensional drawings

Key Features:

- · Single Hall Sensor
- · Newest sensor platform
- · Twist Insensitive Mounting (TIM) Capability
- True Power On (TPO) for Quick Engine Start
- · Open Collector Interface (3-wire)
- Connector acc. 1 928 A00 75S, Code 1, Silver plated contacts
- Using Best-in-Class Plastic Material (PPS) with High Resistance to Media and Humidity

Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min. ⁻¹
Maximum trigger-wheel speed	n _{max.}	4500 min. ⁻¹
Working air gap range		0.2 mm 1.8 mm
Sensor switching position		Near tooth edge
Rated supply voltage	$U_{\rm S,nom}$	5 V or 12V
Supply voltage range	U _S	4.75 V16 V
Supply current	I_{S}	< 10mA
Pull-Up Resistor in ECU	R _{PULL-UP}	1 kOhm 10 kOhm
Sensor Output voltage LOW	U_{OUT_LOW}	≤ 0.5 V
Sensor Output voltage HIGN	U_{OUT_HIGH}	≥ 0.9 x <i>U</i> _{S_OUT}
Output fall time (high – low) 90 % 10 %, U _{S,O} = 5.0 V	<i>t</i> _f ¹)	≤ 4 µs
Output rise time (low – high) 10 % 90 %, U _{S,O} = 5.0 V	t _f ²)	≤ 10 µs
Steady-state temperature in sensor and transition zone		-40°C+150°C
Steady-state temperature in connector zone		-40°C+150°C
Programming Option		50TL05-86

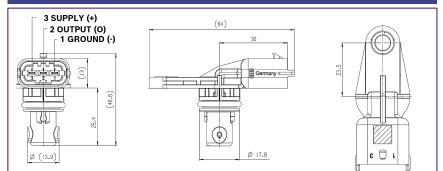
^{1, 2)} Depends on ECU input circuit (e.g. Rpull_up value)

Accessories		
Connector housing	3-pin	1 928 405 524
Contact pins (silver plated)	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins (silver plated)	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Sensor for Camshaft Applications

BOSCH

Product group


CPS-4

Part number

0 232 103 510

Dimensional drawings

Key Features:

- · Single Hall Sensor
- · Newest sensor platform
- · Twist Insensitive Mounting (TIM) Capability
- · True Power On (TPO) for Quick Engine Start
- Bosch plug connector acc. A 928 000 453, Code 2, Tin plated contacts
- Open Collector Interface (3-wire)
- · Robust Design

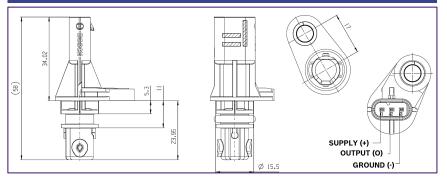
Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min. ⁻¹
Maximum trigger-wheel speed	n _{max.}	4500 min. ⁻¹
Working air gap range		0.2 mm 1.8 mm
Sensor switching position		Near tooth edge
Rated supply voltage	$U_{\rm S,nom}$	5 V or 12V
Supply voltage range	Us	4.75 V16 V
Supply current	Is	< 10mA
Pull-Up Resistor in ECU	R _{PULL-UP}	1 kOhm 10 kOhm
Sensor Output voltage LOW	U_{OUT_LOW}	≤ 0.5 V
Sensor Output voltage HIGN	U_{OUT_HIGH}	≥ 0.9 x <i>U</i> _{S_OUT}
Output fall time (high – low) 90 % 10 %, $U_{S,O}$ = 5.0 V	$t_{\rm f}^{\ 1}$)	≤ 4 µs
Output rise time (low – high) 10 % 90 %, U _{S,O} = 5.0 V	t _f ²)	≤ 10 µs
Steady-state temperature in sensor and transition zone		-40°C+150°C
Steady-state temperature in connector zone		-40°C+150°C
Programming Option		70TL05-86

^{1, 2)} Depends on ECU input circuit (e.g. Rpull_up value)

Accessories		
Connector housing	3-pin	1 928 403 734
Contact pins (tin-plated)	For Ø 0.51.0 mm²	1 928 498 056
Contact pins (tin-plated)	For Ø 1.52.5 mm²	1 928 498 057
Single-wire seal	For Ø 0.351.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

Sensor for Camshaft Applications (Diff.-Hall Sensor)

Product type


CPS-4 HA (HA = High Accuracy)

Part number

0 232 103 50C

Dimensional drawings

Key Features:

- · Differential Hall Sensor
- High Accuracy Sensor Version
- · Newest sensor platform
- Open Collector Interface (3-wire)

Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min. ⁻¹
Maximum trigger-wheel speed	n _{max.}	5000 min. ⁻¹
Working air gap range		0.2 mm 1.8 mm
Sensor switching position		Tooth centre
Rated supply voltage	$U_{\rm S,nom}$	5 V
Supply voltage range	Us	4.5 V5.5 V
Supply current	Is	< 15 mA
Pull-Up Resistor in ECU	R _{PULL-UP}	1 kOhm 5 kOhm
Sensor Output voltage LOW	U_{OUT_LOW}	≤ 0.5 V
Sensor Output voltage HIGN	U_{OUT_HIGH}	≥ 0.9 x <i>U</i> _{S_OUT}
Output fall time (high – low) 90 % 10 %, U _{S,O} = 5.0 V	t_{f}^{-1})	≤ 1.5 µs
Output rise time (low – high) 10 % 90 %, U _{S,O} = 5.0 V	t _f ²)	≤ 10 µs
Steady-state temperature in sensor and transition zone		-40°C+150°C
Steady-state temperature in connector zone		-40°C+150°C
Programming Option		96-SO

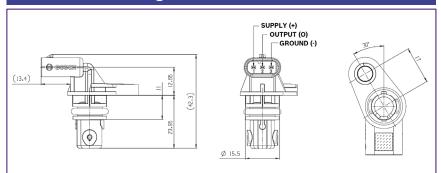
^{1, 2)} Depends on ECU input circuit (e.g. Rpull up value)

Accessories		
Connector housing	3-pin	Hirschmann 872-97500
		Coding B, Silver plated

 $\label{lem:constraints} \mbox{Accessories are not included in the scope of delivery of the sensor and therefore to be ordered separately as required.}$

Sensor for Camshaft Applications (Diff.-Hall Sensor)

Product type


CPS-4 HA (HA = High Accuracy)

Part number

0 232 103 50F

Dimensional drawings

Key Features:

- · Differential Hall Sensor
- · High Accuracy Sensor Version
- Newest sensor platform
- · Open Collector Interface (3-wire)

Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min. ⁻¹
Maximum trigger-wheel speed	n _{max.}	5000 min. ⁻¹
Working air gap range		0.2 mm 1.8 mm
Sensor switching position		Tooth centre
Rated supply voltage	$U_{\rm S, nom}$	5 V
Supply voltage range	U _S	4.5 V5.5 V
Supply current	I _S	< 15 mA
Pull-Up Resistor in ECU	R _{PULL-UP}	1 kOhm 5 kOhm
Sensor Output voltage LOW	U_{OUT_LOW}	≤ 0.5 V
Sensor Output voltage HIGN	U_{OUT_HIGH}	≥ 0.9 x <i>U</i> _{S_OUT}
Output fall time (high – low) 90 % 10 %, U _{S,O} = 5.0 V	$t_{\rm f}^{\ 1}$)	≤ 1.5 µs
Output rise time (low – high) 10 % 90 %, U _{S,O} = 5.0 V	t _f ²)	≤ 10 µs
Steady-state temperature in sensor and transition zone		-40°C+150°C
Steady-state temperature in connector zone		-40°C+150°C
Programming Option		96-SO

^{1, 2)} Depends on ECU input circuit (e.g. Rpull up value)

Accessories		
Connector housing	3-pin	Hirschmann 872-97500
		Coding B, Silver plated

Sensor for Transmission Applications (TRD)

- Precise and reliable digital measurement of rotation speed and rotation direction
- Two-wire interface
- Non-contact measurement
- Not susceptible to dirt
- Resistant to mineral oil products (fuel, engine oil)
- High robustness against electromagnetic interference (EMC)

Application

Hall speed sensors are ideal for noncontact, wear-free measurement of speed and direction in transmission applications.

Design and operation

The TRD sensor signal is used for the detection of the rotation speed and rotation direction in transmission applications.

The sensor detects the teeth of a ferromagnetic target wheel and the rotation direction, performs signal processing in the ASIC and transmits the processed signal to the control unit (CU).

TRD transmission rotation sensor with rotation direction detection contains a permanent magnet and a Hall IC. Due to the rotation of a magnetically soft target wheel in front of TRD the magnetic field is modulated at the place of the differential hall probe. The sensor detects magnetic differential fields at the transition between tooth and slot of the ferromagnetic target wheel. This modulation results in changes of the output signal. The magnetic field is evaluated by the differential hall probes in the ASIC.

BOSCH

Explanation of characteristic data

Rotation Speed

AG	Air Gap
U_{S}	Sensor supply voltage
U_{S_OUT}	Voltage on Rpull_up Resistor

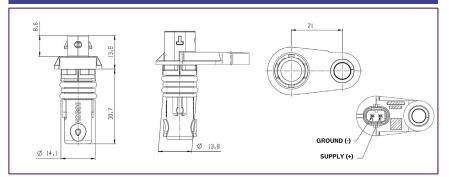
 $I_{\rm S}$ Sensor supply current $t_{\rm f}$ Fall time (trailing signal edge). $t_{\rm r}$ Rise time (leading signal edge).

Installation instructions

- Please refer to installation conditions given in the offer drawing and Technical Customer Documentation (TCD)
- Route the connecting cables away from interference sources like ignition cables.
- Connect the ground connection of the sensor to the ECU ground pin to prevent issues arising from trigger level shifting and ground offsets.
- Protect the sensor against the destructive action of static discharge during installation.

Sensor for Transmission Applications

Product type


TRD

Part number

0 261 210 32Y

Dimensional drawings

Key Features:

- · Differential Hall Sensor
- · Rotation Direction Detection
- Newest sensor platform
- Current Interface (7 mA/14mA) 2 wire interface
- Wire break and wire short detection
- Target wheel vibration Suppression
- Using Best-in-Class Plastic Material (PPS) with High Resistance to Media and Humidity

Technical data		
Minimum trigger-wheel speed	n _{min.}	0 min ⁻¹
Maximum trigger-wheel speed (60 teeth)	n _{max.}	12000 min ⁻¹
Working air gap range	AG	0.2 mm 2.0 mm
Rated sensor supply voltage	U_{N}	5 V
Sensor supply voltage range	Us	4.5 V 5.5 V
Sensor supply current	I _{S_max}	< 20mA
Output signal LOW level	I _{s_low}	7 mA
Output signal HIGH level	I _{s_high}	14 mA
Steady-state temperature in sensor and transition zone		-40 °C+140 °C
Steady-state temperature in connector zone		-40 °C+140 °C

Accessories		
Connector housing	3-pin	Hirschmann 872-97500
	_	Coding B, Silver plated

Inductive speed sensor

BOSCH

- Precise and reliable measurement of speeds
- ► Non-contacting measurement
- ▶ Not susceptible to dirt
- ► Resistant to mineral oil products (fuel, engine oil)

Application

Inductive speed sensors of this type are suitable for a variety of speed recording applications. Depending on design, they use completely noncontacting and wear-free methods to measure engine speeds (cam or crank) and convert these speeds into electrical signals.

Design and operation

The soft iron core of the speed sensor, surrounded by a winding, is positioned directly opposite a rotating trigger wheel and only separated from this by a narrow air gap. The soft iron core is connected to a permanent magnet, the magnetic field of which extends into the ferromagnetic trigger wheel, by which it is influenced. A tooth directly opposite the sensor concentrates the magnetic field and thus intensifies the magnetic flux in the coil. A gap on the other hand attenuates the flux in the coil. These two states alternate constantly due to the rotation of the ring gear. The transition from gap to tooth (leading tooth edge) and from tooth to gap (trailing tooth edge) produces changes in the magnetic flux which induce an alternating voltage in the coil in line with Faraday's law. The frequency of this voltage can be used for speed determination.

Per tooth the sensor supplies an output pulse, the magnitude of which is governed by the speed, the size of the air gap, the tooth shape and the rotor materials used. Together with the frequency, the amplitude of the output signal also increases with the speed. A minimum speed is therefore necessary to permit reliable evaluation of even very low voltages. A reference mark on the trigger wheel in the form of a large "tooth gap" permits determination of the position of the trigger wheel in addition to the actual speed measurement. The trigger wheel sensor ring forms part of the speed detection system. Sensor rings must be of a high technical standard to provide reliable speed information. Trigger wheel sensor ring specifications are available on request.

Explanation of characteristic data

U Output voltage SEP

n Speed SEP

s Air gap

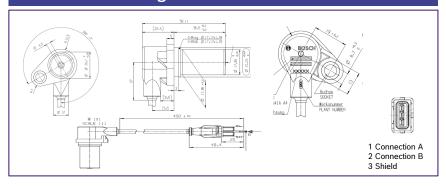
Installation instructions

- Standard Installation conditions guarantee full sensor functioning.
- Route the connecting cables in parallel to minimize interference.
- Protect the sensor against the destructive action of static discharge (CMOS components).

4.3 Rotational-speed sensors Inductive speed sensor

170 mV (1.5mm air-gap, 50 RPM) 7000 (for 60-2 type wheel)

Product group


DG-6-K

Part number

0 281 002 214

Dimensional drawings

Technical data Rotational-speed measuring range 1) n min-1 20 ... 7000 °C Sustained ambient temperature/coil zone - 40 ... + 130 °C Sustained ambient temperature/cable zone - 40 ... + 130 EMI Operating principle Maximum working air gap 1.8 mm Minimum working air gap 0.3 mm Number of turns 4300 turns / windings Winding resistance at 20 °C 2) U₄ Ω 860 ±10% Inductance at 1 kHz mΗ 370 ±60 Degree of protection IPx9K 210 V (0.3mm air-gap, 7000 RPM) Output voltage 2) U V/mV

Hz

Signal frequency

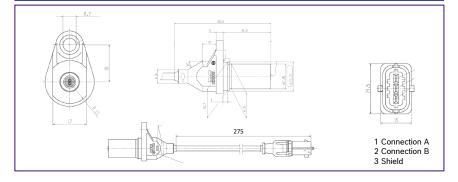
Accessories Connector housing 3-pin 1 928 403 734 Contact pins (tin plated) For Ø 0.5...1.0 mm2; Contents: 100 x 1 928 498 056 Contact pins (tin plated) For Ø 1.5...2.5 mm2: Contents: 100 x 1 928 498 057 Single-wire seal For Ø 0.5...1.0 mm²; Contents: 10 x 1 928 300 599 Single-wire seal For Ø 1.5...2.5 mm²; Contents: 10 x 1 928 300 600 1 928 300 601 Dummy plug

¹⁾ Referenced to corresponding trigger wheel.

²⁾ Change factor k= 1+0.004 (v_w -20°C); v_w Winding temperature.

4.3 Rotational-speed sensors Inductive speed sensor

Product group


DG-6-K

Part number

0 281 002 629

Dimensional drawings

Technical data		
Rotational-speed measuring range 1) n	min ⁻¹	20 7000
Sustained ambient temperature/coil zone	°C	- 40 + 150
Sustained ambient temperature/cable zone	°C	- 40 + 130
Operating principle		EMI
Maximum working air gap		1.8 mm
Minimum working air gap		0.3 mm
Number of turns		4300 turns / windings
Winding resistance at 20 °C $^{2)}$ U_{A}	Ω	860 ±10%
Inductance at 1 kHz	mH	370 ±60
Degree of protection	IP	IPx9K
Output voltage ²⁾ U _A	V/mV	210 V (0.3mm air-gap, 7000 RPM) 170 mV (1.5mm air-gap, 50 RPM)
Signal frequency	Hz	7000 (for 60-2 type wheel)

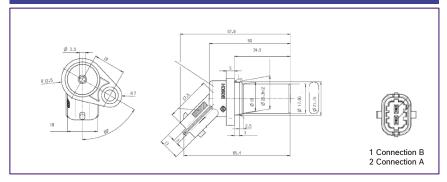
¹⁾ Referenced to corresponding trigger wheel.

Accessories		
Connector housing	3-pin	1 928 404 073
Contact pins	For Ø 0.51.0 mm²	1 928 498 056
Contact pins	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm ²	1 928 300 600
Dummy plug		1 928 300 601

²⁾ Change factor k= 1+0.004 (v_w -20°C); v_w Winding temperature.

4.3 Rotational-speed sensors Inductive speed sensor

Product group


DG-6-S

Part number

0 281 002 315

Dimensional drawings

Technical data Rotational-speed measuring range 1) n min-1 20 ... 7000 °C - 40 ... + 150 Sustained ambient temperature/coil zone °C Sustained ambient temperature/cable zone - 40 ... + 130 EMI Operating principle Maximum working air gap 1.8 mm Minimum working air gap 0.3 mm Number of turns 4300 turns / windings Winding resistance at 20 °C 2) U₄ Ω 860 ±10% Inductance at 1 kHz mΗ 370 ±60 IPx9K Degree of protection 210 V (0.3mm air-gap, 7000 RPM) Output voltage 2) U V/mV 170 mV (1.5mm air-gap, 50 RPM) Hz

Signal frequency

Accessories		
Connector housing	2-pin	1 928 404 072
Contact pins (tin-plated)	For Ø 0.51.0 mm ²	1 928 498 056
Contact pins (tin-plated)	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600
Dummy plug		1 928 300 601

Accessories are not included in the scope of delivery of the sensor and therefore to be ordered separately as required.

7000 (for 60-2 type wheel)

¹⁾ Referenced to corresponding trigger wheel.

²⁾ Change factor k= 1+0.004 (v_w -20°C); v_w Winding temperature.

Piezoelectric vibration sensor

BOSCH

- Reliable detection of structureborne sound to protect machines and motors
- ► Piezo-ceramic element with high measurement sensitivity
- ► Sturdy compact design

Application

Vibration sensors of this this type are suitable for detecting structure-borne vibration occurring for example in motor-vehicle engines due to irregular combustion and in machines. Thanks to their robust design, these vibration sensors can withstand even the most severe operating conditions.

Areas of application

- Knock control for internal-combustion engines
- Machine-tool protection
- Cavitation detection
- Monitoring of pivot bearings
- Anti-theft systems

Design and operation

On account of its inertia, a mass exerts compressive forces on an annular piezo-ceramic element in the same rhythm as the vibrations causing them. As a result of these forces, charge transfer occurs within the ceramic element and a voltage is generated between the upper and lower sides of the ceramic element. The voltage is tapped via contact washers - often filtered and integrated - and is available for use as a measurement signal. Vibration sensors are bolted to the object to be measured so as to relay the vibrations at the measurement location directly to the sensors.

Explanation of characteristic data

E SensitivityF Frequency

g Acceleration due to gravity

Measurement sensitivity

Each vibration sensor has individual transmission characteristics closely related to the measuring sensitivity. The sensitivity is defined as the output voltage per unit of acceleration due to gravity (refer to characteristic curve). The production-related sensitivity scatter is acceptable for applications in which the main emphasis is on recording the occurrence of vibrations rather than on their amplitude. The low voltages supplied by the sensor can be evaluated using a high-impedance AC voltage amplifier.

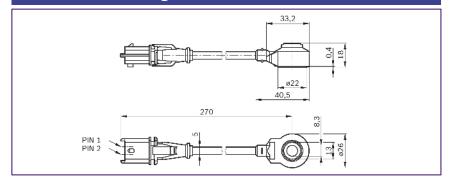
Installation instructions

The sensors must rest directly on their metal surfaces. Use must not be made of packing plates, spring or toothed lock washers for support. The contact surface of the mounting hole must be of high quality to ensure low-resonance coupling of the sensors to the measurement location. The sensor cable is to be laid such that no resonance vibration can occur. The sensor must not be allowed to have contact with liquids for lengthy periods.

Piezoelectric vibration sensor

Product type

KS-4-K


Part number

0 261 231 196

Technical data Vibration sensors 2-pole, with cable Frequency range $0 \dots 24 \text{ kHz}$ Self-impedance > $1 \text{ M}\Omega$ Operating temperature range $-40 \dots + 130 \text{ °C (sensor head } +150 \text{ °C)}$ Permissible sustained vibration $\leq 80 \text{ g}$ Pin coating Gold-plated

Dimensional drawings

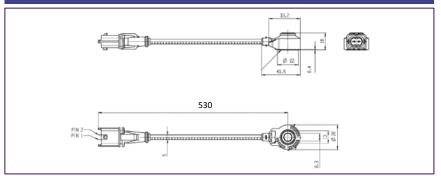
Accessories

Connector housing	2-pin RB compact connector code-1, tin plated terminals	
Connector housing	2-pin	1 928 403 874
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 054
Contact pins	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 055
Individual seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Individual seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

Piezoelectric vibration sensor

Product type

KS-4-K


Part number

0 261 231 218

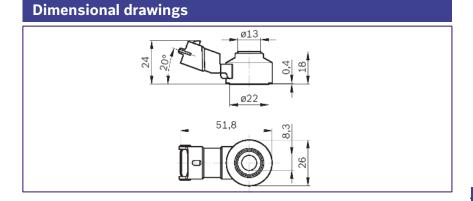
Technical data Vibration sensors 2-pole, with cable Frequency range 0 ... 24 kHz Self-impedance > 1 MΩ Operating temperature range - 40 ... + 130 °C (sensor head 150 °C) Permissible sustained vibration ≤ 80 g Pin coating Gold-plated

Dimensional drawings

Accessories

Connector housing	2-pin RB compact connector code-1 plated terminals	, gold
Connector housing	2-pin	1 928 403 137

Piezoelectric vibration sensor


Product type

KS-4-S

Part number

0 261 231 173

Technical data Vibration sensors 2-pole, without cable Frequency range $3 \dots 22 \text{ kHz}$ Self-impedance > $1 \text{ M}\Omega$ Operating temperature range $-40 \dots + 150 \text{ °C}$

≤ 80 g

Gold-plated

Accessories

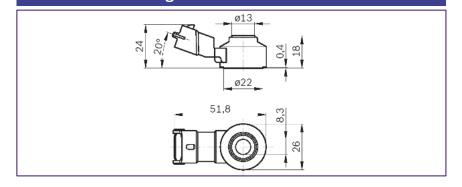
Permissible sustained vibration

Pin coating

Connector housing	ct connector code-1, gold
plated terminals	
Connector housing 2-pin	1 928 403 874
Contact pins For Ø 0.51.0 n	nm²; Contents: 100 x
Contact pins For Ø 1.52.5 n	nm²; Contents: 100 x
Individual seal For Ø 0.51.0 n	nm²; Contents: 10 x 1 928 300 599
Individual seal For Ø 1.52.5 n	nm²; Contents: 10 x
Dummy plug	1 928 300 601

Piezoelectric vibration sensor

Product type


KS-4-S

Part number

0 261 231 176

Dimensional drawings

Technical data Vibration sensors 2-pole, without cable Frequency range 3 ... 22 kHz Self-impedance > 1 MΩ Operating temperature range - 40 ...+ 130 °C Permissible sustained vibration ≤ 50 g

Tin-plated

Accessories

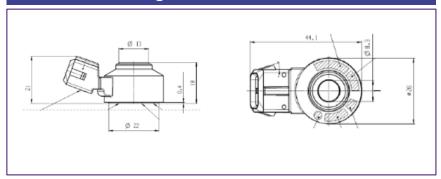
Pin coating

Connector housing	2-pin RB compact connector code-1, gold plated terminals	
Connector housing	2-pin	1 928 403 874
Contact pins	For Ø 0.51.0 mm ² ; Contents: 100 x	1 928 498 056
Contact pins	For Ø 1.52.5 mm²; Contents: 100 x	1 928 498 057
Individual seal	For Ø 0.51.0 mm ² ; Contents: 10 x	1 928 300 599
Individual seal	For Ø 1.52.5 mm²; Contents: 10 x	1 928 300 600
Dummy plug		1 928 300 601

5 Structure-borne sound Piezoelectric vibration sensor

Product type

KS-4-S


Part number

0 261 231 208

Technical data Vibration sensors 2-pole, without cable Frequency range $0 \dots 24 \text{ kHz}$ Self-impedance > $1 \text{ M}\Omega$ Operating temperature range $-40 \dots + 130 \text{ °C}$ Permissible sustained vibration $\leq 80 \text{ g}$ Pin coating Tin-plated

Dimensional drawings

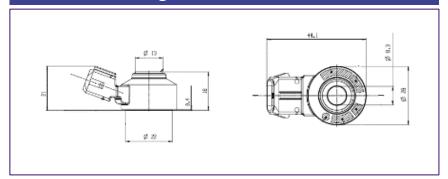
Accessories

Connector housing	2-pin Jetronics connector, gold plated terminals

Piezoelectric vibration sensor

Product type

KS-4-S


Part number

0 261 231 300

Technical data	
Vibration sensors	2-pole, without cable
Frequency range	0 24 kHz
Self-impedance	> 1 MΩ
Operating temperature range	- 40+ 150 °C
Permissible sustained vibration	≤ 80 g
Pin coating	Gold-plated

Dimensional drawings

Temperature sensor for air/liquid

BOSCH

- ► Temperature range -40C 130C
- Measurement of air, coolant, fuel and oil
- ► Measurement with temperature sensitive resistors
- ► Broad temperature range

Application

The temperature sensor is a sensor, converting a temperature into an electrical signal. Available for air, coolant, fuel and oil temperature measurement.

In motor vehicles they are used to measure the temperature of the intake air in the range -40...130 °C.

Design and operation

NTC thermistors have a negative temperature coefficient, i. e. their conductivity increases with increasing temperature; their resistance decreases. The conductive element of the temperature sensor consists of semiconducting heavy metal oxides and oxidized mixed crystals pressed or sintered into wafers or beads with the aid of binding agents and provided with a protective casing. In combination with a suitable evaluation circuit, such resistors permit precise temperature determination. Depending on the housing design, the sensors are suitable for measuring temperatures in liquids and gases.

Explanation of characteristic data

R Resistance

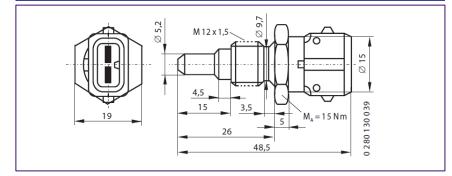
Temperature

Installation instructions

The sensor is installed such that the front section with the sensing element is directly exposed to the fluid flow.

Temperature sensor for air/liquid

Product type


TF-L

Part number

0 280 130 039

Dimensional drawings

Technical data		
Temperature range	°C	-40 + 130
Features	Sensor in steel housing	ng with threaded connection.
Application/medium		air
Rated resistance at 20 °C	kΩ	2,5 ± 5 %
Resistance at -10 °C	kΩ	8,727 10,067
Resistance at +20 °C	kΩ	2,375 2,625
Resistance at +80 °C	kΩ	0,296 0,349
Nominal voltage	V	5 ± 0,15
Max. measurement current	mA	1
Self-heating with max. perm. Power loss of $P = 2$ mW and still air (23 °C)	с) к	≤ 2
Temperature/time constant $\tau_{63}^{\ 1)}$	S	≤ 45
Approximate value for permissible Vibration acceleration $a_{\rm sin}$ (sinusoidal vibration)	m/s²	300
Corrosion-tested as per		DIN 50 018
Degree of protection		IP6K9K
Tightening torque	Nm	15 ± 2
Thread		M12 x 1.5

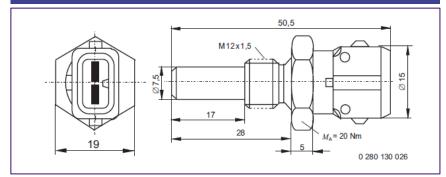
¹⁾ Time required to attain a difference in resistance of 63% of the final value given an abrupt change in measurement temperature from 20°C to 75°C; flow velocity of air 6 m/s.

Accessories

2-pin Jetronics connector, tin plated terminals	
2-pin	1 928 402 078
Temperature-resistant	1 280 703 031
For Ø 0.51.0 mm²	AMP 929 939-3
For Ø 1.52.5 mm²	AMP 929 937-3
For Ø 0.51.0 mm²	1 987 280 106
For Ø 1.52.5 mm²	1 987 280 107
	terminals 2-pin Temperature-resistant For Ø 0.51.0 mm² For Ø 1.52.5 mm² For Ø 0.51.0 mm²

Temperature sensor for air/liquid

Product type


TF-W

Part number

0 280 130 026

Dimensional drawings

BOSCH

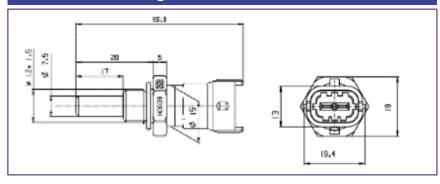
Technical data		
Measuring range	°C	-40 +130
Features		Sensor in brass housing.
Application/medium		Oil/water
Rated resistance at 20 °C	kΩ	2,5 ± 5 %
Resistance at -10 °C	kΩ	8,727 10,067
Resistance at +20 °C	kΩ	2,375 2,625
Resistance at +80 °C	kΩ	0,296 0,349
Temperature/time constant $\tau_{63}^{-1)}$	S	≤ 15
Degree of protection 1)		IP 5K 9K
Thread		M 12 x 1,5
Corrosion-tested as per		DIN 50 021
Tightening torque	Nm	20 ± 5
Rated voltage	V	5 ± 0,15

¹⁾ With individual seal.

Accessories		
Connector housing	2-pin	1 928 402 078
Protective cap	Temperature-resistant	1 280 703 031
Contact pins	For Ø 0.51.0 mm²	AMP 929 939-3
Contact pins	For Ø 1.52.5 mm²	AMP 929 937-3
Individual seal	For Ø 0.51.0 mm²	1 987 280 106
Individual seal	For Ø 1.52.5 mm²	1 987 280 107

Temperature sensor for air/liquid

Product type


TF-W

Part number

0 280 130 093

Dimensional drawings

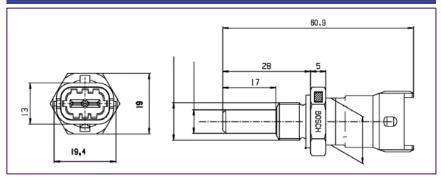
Technical data		
Temperature range	°C	-40 +130
Features		Sensor in brass housing.
Application/medium		Coolants, fuel, oil
Tolerance at +100 °C	kΩ	0,1886 ± 2%
Rated resistance at 20 °C	kΩ	2,5 ± 5%
Resistance at -10 °C	kΩ	8,727 10,067
Resistance at +20 °C	kΩ	2,375 2,625
Resistance at +80 °C	kΩ	0,296 0,349
Temperature/time constant $\tau_{63}^{1)}$	s	= 15 s
Degree of protection 1)		IP 6K 9K
Thread		M12 x 1,5
Corrosion-tested as per		DIN EN 60068-2-11
Tightening torque	Nm	20 ± 5
Rated voltage	V	5 ± 0,15

Accessories

Connector housing	2-pin RB compact connector co tin plated terminals	ode-1,
Connector housing	2-pin	1 928 403 137
Contact pins (tin-plated)	For Ø 0.51.0 mm²	AMP 929 939-3
Contact pins (tin-plated)	For Ø 1.52.5 mm²	AMP 929 937-3
Single-wire seal	For Ø 0.51.0 mm²	AMP 828 904
Single-wire seal	For Ø 1.52.5 mm²	AMP 828 905
Dummy plug		AMP 828 922

Temperature sensor for air/liquid

Product type


TF-W

Part number

0 281 002 170

Dimensional drawings

Technical data

rechnical data		
Temperature range	°C	-40 +150
Features		Sensor in brass housing.
Application/medium		Oil/water
Rated resistance at 100 °C	kΩ	0,1866 ± 2 %
Resistance at -10 °C	kΩ	8,640 10,149
Resistance at +20 °C	kΩ	2,351 2,648
Resistance at +80 °C	kΩ	0,313 0,332
Temperature/time constant τ_{63}^{11}	S	≤ 15
Degree of protection 1)		IP 6K 9K
Thread		M 12 x 1,5
Corrosion-tested as per		DIN EN 60068-2-11
Tightening torque	Nm	20 ± 5
Rated voltage	V	5 ± 0,15

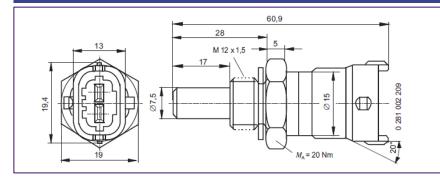
¹⁾ With single-wire seal.

Accessories

Connector housing	2-pin RB compact connector co gold plated terminals	ode-1,
Connector housing	2-pin	1 928 403 137
Contact pins (gold-plated)	For Ø 0.51.0 mm ²	AMP 2 929 939-1
Contact pins (gold-plated)	For Ø 1.52.5 mm²	AMP 2 929 937-1
Single-wire seal	For Ø 0.51.0 mm²	AMP 828 904
Single-wire seal	For Ø 1.52.5 mm²	AMP 828 905
Dummy plug		AMP 828 922

Temperature sensor for air/liquid

Product type


TF-W

Part number

0 281 002 209

Dimensional drawings

Technical data

Technical data		
Temperature range	°C	-40 + 130
Features		Sensor in brass housing.
Application/medium		Oil/water
Rated resistance at 100 °C	kΩ	0,1866 ± 2 %
Resistance at -10 °C	kΩ	8,640 10,149
Resistance at +20 °C	kΩ	2,351 2,648
Resistance at +80 °C	kΩ	0,313 0,332
Temperature/time constant $\tau_{63}^{1)}$	s	≤ 15
Degree of protection 1)		IP 6K 9K
Thread		M 12 x 1,5
Corrosion-tested as per		DIN EN 60068-2-11
Tightening torque	Nm	20 ± 5
Rated voltage	V	5 ± 0,15
· · · · · · · · · · · · · · · · · · ·		

¹⁾ With single-wire seal.

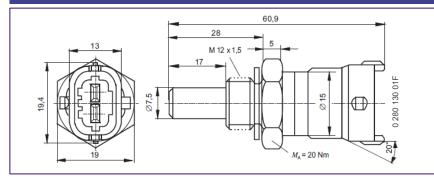
Accessories

Connector housing	2-pin RB compact connector code-1, 7 plated terminals	Tin
Connector housing	2-pin	1 928 403 874
Contact pins	For Ø 0.51.0 mm ²	1 928 498 056
Contact pins	For Ø 1.52.5 mm ²	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm ²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600

Temperature sensor for air/liquid

 5 ± 0.15

Product type


TF-W Alu

Part number

0 280 130 01F

Dimensional drawings

Technical data		
Temperature range	°C	-40 + 140
Features		Sensor with aluminum (Al-6082) housing.
Application/medium		Oil/water/fuel
Rated resistance at 100 °C	kΩ	0,1866 ± 2 %
Resistance at -10 °C	kΩ	8,640 10,149
Resistance at +20 °C	kΩ	2,351 2,648
Resistance at +80 °C	kΩ	0,313 0,332
Temperature/time constant τ_{63}^{11}	S	≤ 15
Degree of protection 1)		IP 6K 9K
Thread		M 12 x 1,5
Corrosion-tested as per		DIN EN 60068-2-11
Tightening torque	Nm	20 ± 5

¹⁾ With single-wire seal.

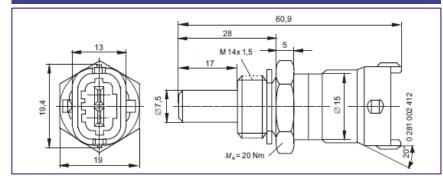
Rated voltage

Accessories

2-pin RB compact connector code-1 plated terminals	, Tin
2-pin	1 928 403 874
For Ø 0.51.0 mm²	1 928 498 056
For Ø 1.52.5 mm²	1 928 498 057
For Ø 0.51.0 mm²	1 928 300 599
For Ø 1.52.5 mm²	1 928 300 600
	plated terminals 2-pin For Ø 0.51.0 mm² For Ø 1.52.5 mm² For Ø 0.51.0 mm²

Temperature sensor for air/liquid

Product type


TF-W

Part number

0 281 002 412

Dimensional drawings

Technical data

Technical data		
Temperature range	°C	-40 +130
Features		Sensor in brass housing.
Application/medium		Oil/water
Tolerance at +100 °C	K	0,1886 ± 2%
Rated resistance at 100 °C	kΩ	2,5 ± 6 %
Resistance at -10 °C	kΩ	8,640 10,149
Resistance at +20 °C	kΩ	2,351 2,648
Resistance at +80 °C	kΩ	0,313 0,332
Temperature/time constant τ_{63}^{11}	s	≤ 15
Degree of protection 1)		IP 6K 9K
Thread		M 14 x 1,5
Corrosion-tested as per		DIN EN 60068-2-11
Tightening torque	Nm	20 ± 5
Rated voltage	V	5 ± 0,15

¹⁾ With single-wire seal.

Accessories

Connector housing	2-pin RB compact connector code-1, tin plated terminals	
Connector housing	2-pin	1 928 403 874
Contact pins	For Ø 0.51.0 mm²	1 928 498 056
Contact pins	For Ø 1.52.5 mm²	1 928 498 057
Single-wire seal	For Ø 0.51.0 mm²	1 928 300 599
Single-wire seal	For Ø 1.52.5 mm²	1 928 300 600

List of part numbers

Part number	Page
0 232 103 10K	72
0 232 103 10W	73
0 232 103 502	74
0 232 103 506	75
0 232 103 50C	77
0 232 103 50F	78
0 232 103 510	76
0 258 006 956	29
0 258 017 025	31
0 258 017 594	31
0 258 037 056	33
0 258 986 784	29
0 261 210 32Y	80
0 261 210 389	71
0 261 230 00J	56
0 261 230 01G	57
0 261 230 161	37
0 261 230 217	42
0 261 230 245	43
0 261 230 247	44
0 261 230 280	45
0 261 230 283	46
0 261 230 302	47
0 261 230 310	48
0 261 230 373	54
0 261 230 416	49
0 261 230 499	55
0 261 231 173	88
0 261 231 176	89
0 261 231 196	86
0 261 231 208	90

Part number	Page
0 261 231 218	87
0 261 231 300	91
0 261 232 02X	63
0 261 232 051	40
0 261 232 0HD	38
0 261 544 00K	60
0 261 544 018	61
0 261 544 01F	59
0 261 544 02G	62
0 261 545 108	65
0 261 545 115	65
0 261 545 188	66
0 261 546 003	65
0 261 546 00A	65, 67
0 261 547 012	65
0 280 130 01F	98
0 280 130 026	94
0 280 130 039	93
0 280 130 093	95
0 280 218 03X	16
0 280 218 04B	17
0 280 218 07K	21
0 280 218 07T	18
0 280 218 07U	19
0 280 218 120	8
0 280 218 218	10
0 280 218 416	13
0 280 218 429	14
0 280 218 446	9
0 280 218 900	27
0 280 218 902	26

Part number	Page
0 281 002 170	96
0 281 002 209	97
0 281 002 214	82
0 281 002 315	84
0 281 002 412	99
0 281 002 629	83
0 281 002 930	69
0 281 002 956	15
0 281 004 805	31
0 281 006 028	50
0 281 006 076	51
0 281 006 102	52
0 281 006 300	39
0 281 006 372	65
0 281 006 597	20
0 281 006 812	22
0 281 007 302	65, 68
0 281 007 740	23
0 281 050 074	35